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1. SUMMARY

This report is the final report on a portion of the work performed
within Task VI under contract NAS3-3231. The work performed here was
a study to investigate the feasibility of using a set of generalized guidance
equations to direct a wide variety of future Centaur missions, The report
discusses why explicit guidance techniques are best suited to the purposes
of the generalized guidance required. It presents a set of ground rules
which essentially define the missions which are considered to fall within
the scope of a utility vehicle. Theoretical developments of the equations
recommended are given and performance results reported. A set of
computer requirements based on these equations is presented and the

implications of these requirements are discussed.
The conclusions reached in the study are:

a) It is possible to design a set of generalized equations
which will perform space tasks, and which can be
accommodated by present day "advanced" flight
computers.

b) The performance of these equations is comparable and
can exceed the performance of contemporary proce-
dures,

c) The current Centaur computer (-3 Librascope) is not
adequate to handle the requirements of such an
advanced set of equations, However, the possibility
exists that the current computer could handle a ver-
sion of the equations which had a reduced mission
accomplishment capability (i. e, the ability to perform
intercept guidance would be eliminated),



2. INTRODUCTION

2.1 OBJECTIVES

The objectives of this study were, in the broadest sense, to
establish the feasibility of using a single set of generalized guidance
equations to direct all the missions which could reasonably be predicted
for the Centaur vehicle. It was further considered that this same set of
equations should guide all stages through payload injection. The feasi-
bility was to be evaluated within the context of the Advanced Centaur
Guidance System Study contract (# NAS 3-3231, Task VI) which has as
its purpose the investigation of requirements for an improved version
of the guidance system for the Centaur vehicle with the appropriate lower
stages. The two areas in which major improvements are contemplated

are the inertial guidance hardware and the flight computer.

The guidance euqations and other associated guidance software
are a primary function in determining the flight computer requirement.
This is because a major portion of the computer memory is taken up
by the guidance software and the speed at which the guidance computations
must be made is a function of the complexity of the equations. The con-
tribution to the computer requirements dictated by the hardware interface
is more readily identifiable at a later stage in development when tradeoffs
among available computer space, the computer input/output capability and
the hardware characteristics can be made. Section 4.1 however, gives
initial estimates for the requirements of these routines so that a gross

maximum computer sizing estimate can be given.

The contribution to guidance system error due to the guidance soft-
ware is generally small compared to the contribution of the measurement
error and therefore is not critical to the performance of an advanced system,
However, it is reasonable to place an accuracy requirement on any gener-
alized equations approach to be comparable if not better than the current
"special purpose" equations capability. Section 4 presents some of the

performance capabilities of these equations.




For the above reasons, feasibility was evaluated primarily on the
basis of whether the guidance equations could be reasonablyaccommodated
in a computer currently existing or well along in development and of

acceptable size and weight for the Centaur applications.

The guidance computational routines presented and discussed in this
report are those which will form the major contribution from the guidance
software to the definition of the computer requirements and which are
unique to the guidance equation philosophy adopted. Other routines (such
as navigational initialization, alignment, calibration, etc.) which in their
essential forms are not dependent on the form of the guidance equations
or which are dependent on the actual computer itself (such as mode
sequencing logic, diagnostic and self tests, etc.) are not discussed in
great detail. The contribution to the requirements of these routines can,
however, be estimated from previous experience and these estimates are
given in Section 4.1 together with overall computer requirements as

prescribed from this study.
2.2 WHY GENERALIZED EQUATIONS

This section will discuss why there do, indeed, exist valid
reasons for devoting considerable effort to the study of the use of general-
ized guidance equations; and also what general disadvantages can be

identified in connection with guidance software generalization.

A basic role of the proposed Advanced Centaur is that of performing
the functions of a highly reliable utility vehicle. An unavoidable implica-
tion of this concept is that such a space system be capable of carrying out
many different classes of missions and, as a consequence, have a large
repertoire of space maneuvers (i. e. high flexibility). Further is should
be capable of performing any of these missions on relatively short notice
which means, ideally no system modification, but more practically, a
minimum of modification. Thus from the guidance software point of view
a single set of guidance equations, programmed once and for all in the
flight computer, capable of directing all of the proposed missions and
requiring a minumum of pre-flight targeting would meet these flexibility

and modification requirements admirably.
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A further advantage of using a single set of guidance equations is
the opportunity for continual evaluation of performance of the equations
thereby gaining extensive knowledge of their capabilities with the resulting
ultimate development of high levels of confidence in their operation. Also
in this connection high ultimate reliability can be achieved using a stan-

dardized set of equations.

A less concrete reason but of possibly greater long term significance
than the preceeding ones, is that the logical expectation of the eventual
routine use of highly operational multipurpose spacecraft for various and
sundry space duties (with the capability to meet changing mission require-
ments on very short notice or even in flight) will require a concommitant
generality in guidance software. It would thus seem that the accumulation
of experience in the formulation, evaluation, and use of generalized
guidance techniques now and in the near future would be of significant
value when it comes time to develop these advanced general purpose vehicles.
Indeed the Advanced Centaur concept is an early version of such vehicles
and would be a logical place to perform early evaluation of generalized

guidance.

In terms of long term economy, the total program cost for a general-
ized approach should be less than for a mission-by-mission concept of
guidance equation development. This saving would come from the mini-
mization of not only total equation development "effort" but also from the
minimization of supporting software requirements such as targeting and

validation programs which are performed for each mission.

Another advantage of the particular generalized equation set presented
in this report is that they are not sensitive to changes in the booster sys-
tem configuration. Thus substitution of the Atlas booster vehicle by a
Saturn or Titan vehicle would require only a change of constants with per-
haps minor output processing to interface with the lower stage control
system and discrete sequencing. Some minor modification of the atmo-
spheric steering equations might also be appropriate when boosters other

than the Atlas are used. This point is discussed in Section 5. 8.

The major disadvantage of the generalized approach is the necessary
complexity of the equations and the fact that their evaluation must include

proving that they function properly over the range of generality that they
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were designed for. This implies slightly more development and validation

effort than for a specific mission approach where software is tailored to a

smaller computer.

In summary then, the case for the use of generalized equations as
opposed to the mission-by-mission approach is supported by the following

attributes of the former.
a) High flexibility
b) High confidence levels in operation
c) High performance reliability
d) Lower total program cost
e) Low reaction time to booster configuration changes

f) Opportunity for accumulation of experience with highly
generalized techniques.
The disadvantages arise primarily from the complexity of the generalized
equations and the resultant level of initial effort needed to get the program

operational.
2.3 WHY EXPLICIT EQUATIONS

In this section a brief discussion will be given on why explicit tech-
niques were chosen in preference to perturbative methods. Such a discus-
sion is appropriate since there exists a large fund of experience with the
perturbative methods, and for a given mission the explicit techniques
generally are more complex thus requiring more computer capacity and

greater computational speed.

First, then, it can be stated that with the advancing state of the art
in computer technology, the computer package has been reduced in
weight and volume with significantly increased computational speeds.
Thus, where in the past, hardware limitations militated against the use
of explicit techniques, today, with such large, high speed machines as the
TRW LEM AGS or UNIVAC 1824, it becomes feasible to take advantage
of some of the significant advantages of explicit guidance. These
advantages are principally that explicit equations are capable of being

more flexible and require far less precomputation (targeting).
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These two basic advantages arise from the fact that the inflight
equations used to compute the required burnout (or engine cutoff) condi-
tions result from using the fundamental principles of two body mechanics.
Thus injection into any specified geo-focal orbit is achieved by computing

the cutoff conditions utilizing the two basic equations,

P

ro= 1l + ecosft

[—

"2=“(% z)

which can be recognized as the general equation for a conic and the vis-
viva energy equation respectively (see below for the detailed application
of these equations). Fundamentally then, all that needs to be provided
are the parameters of the conical orbit discussed (i.e., p, e, a) and the
same equations can be used to derive the cutoff conditions for circular,
elliptic, parabolic, or hyperbolic orbits. This contrasts to the pertur-
bative techniques where in general for each new conic attempted much
pre-flight computation must be carried out in order to first, obtain the
required nominal trajectory and burnout conditions and then, to determine
a set of partial derivatives which relate the nominal burnout conditions to
the required burnout conditions on a non nominal trajectory. Effectively
then, using perturbative techniques often requires extensive new guidance
software for many different objectives of a powered trajectory. In view
of the above discussion, the basic difficulties in attempting to formulate
generalized guidance equations using perturbative techniques, is that
there would need to be stored within the flight computer the pre-targeted
information for all of the maneuvers contemplated within the desired
range of flexibility. Thus the storage capacity of the flight computer
would quickly limit the degree of flexibility capable with the perturbative
equations. An alternative would be to store the pre-targeted information
in a ground facility computer, or to develope several special purpose

programs neither of which appears as attractive as the one set.

The case for the use of explicit equations is further supported when
it becomes necessary to have the guidance equations treat intercept and

rendezvous problems as well as injections into specified orbits. In the
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intercept case the problem is one of guiding the spacecraft in such a way
that it ultimately intercepts another vehicle (or point in space) whose
position in general, is changing rapidly. The procedure for performing
this type of maneuver using explicit techniques is to utilize the current

position of the spacecraft, the position of the target from ephemeris data,

and a time-to-intercept, in order to seek out a satisfactory intercept
trajectory. These computations are done in flight (in-flight targeting) and
the spacecraft can thus be put into the intercept trajectory from any
position it might find itself, provided other constraints are not violated
(e.g. propellant, perigee, etc. ). If the same problem were to be solved
using perturbative methods, the approach would be to develop a nominal
intercept trajectory on the basis of a given set of spacecraft and target
vehicle conditions. From this trajectory the appropriate error coeffi-
cients would be generated (i.e., pre-targeted quantities) from which the
required cutoff conditions necessary to intercept from off-nominal
conditions could be computed. In order to expand the capability to inter-
cept from more than a single set of conditions, the error coefficients
would have to be computed for each condition desired and then stored in
the flight computer (or provision made to transmit the appropriate
coefficients when and as needed from the ground). The storage of these
coefficients in the form of time dependent polynomials, as is common,
would alleviate the storage problem but accurate fits, good over long
continuous periods or more than one injection opportunity, are difficult if
not impossible to obtain. Thus, here again flexibility would be limited by
storage and/or data retrival limitations. Furthermore even if it were
feasible to adequately process the great amount of data needed by perturb-
ative equations to approach the inherent flexibility of the explicit approach,
the pre-flight targeting effort required to generate all of this information
would make its usefullness highly questionable when there exist more direct

techniques, involving less arduous preparations which canperform the

same tasks. -

An additional advantage of the explicit approach is that it is less
sensitive to deviations in the booster trajectory. The reason for this is
that the explicit procedures are not dependent on nominal trajectories and

generate guidance commands on the basis of whole state variables instead

of using approximate linear perturbation techniques.
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In summary, the advantages in using explicit equations over per-

turbative techniques are:
a) Higher flexibility
b) Much less pre-flight computation (targeting)
c) Less sensitivety to deviations in booster trajectory

d) Less computer capacity for simultaneous multiple
mission computation.

Thus, on balance, since the advanced hardware is available it seems
evident that explicit techniques, though involving more complex in-flight
computations at higher computing speeds, provide more flexibility and
and require less mission dependent pre-computation than perturbative
methods and are therefore preferable for space applications where fre-

quent and varied missions and maneuvers are required.
2.4 GROUND RULES

2.4.1 Missions

The guidance equations presented in this report were designed to
provide guidance for a multipurpose payload injection system with the
Centaur as the upper stage and the Atlas booster system as the lower
stages.* The missions which the equations were designed to direct are
the following, and can be carried out in an appropriate single or two burn

mode (or 3 burn in case of a synchronous orbit).

a) Boost and injection of a payload into an earth orbit.

b) Boost and injection of a payload into a translunar
trajectory.

c) Boost and injection of a payload into an interplanetary
trajectory.

d) Boost and injection of a communications satellite into an
earth synchronous orbit,

"The use of the Atlas booster system in the development and evaluation of

the equations does not restrict the use of the equations to this booster
system, '
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e) Boost and injection of a payload into an intercept
orbit for the purpose of effecting an ultimate rendezvous
with an orbiting vehicle (it is assumed here that the
Centaur would be passive, from at least the guidance
command point of view, for the midcourse and terminal
homing portions of the rendezvous).

These specific mission capabilities require a repertoire of
maneuver capabilities which permit the system to be readily adaptable to
future mission requirements. Thus, such advanced missions as satellite
interception and/or inspection, or a refueling and support flight for an
orbiting space station, for which there is presently no specific require-
ment, could be easily assimilated into the basic generalized capabilities
of the equation set. In actuality the equations were designed with these

advanced concepts in mind as well as those listed previously.

2.4.2 Limitations of the Equations

The equations as presented in this report are limited to the boost
and injection functions, In addition there is no provision made for handling
long term missions requiring external attitude updating or orbit deter-
mination because of the inherent limitations of the Centaur vehicle itself

to these applications.

2.4.3 Vehicle Configurations

As stated above the vehicle which served as the model for this study
was the Atlas Centuar configuration. Thus, as presented in this report, the
equations provide guidance for the Atlas Booster, Atlas Sustainer, and
Centaur stages. As such, the Atlas Booster was considered to complete
the penetration of the atmosphere and thus uses a separate steering
scheme designed to penetrate the atmosphere without violating the Atlas/
Centaur loading and heating constraints, However, this atmospheric
portion of the generalized equation set is designed as a modular component
of the guidance computation system and may easily be replaced with another
atmospheric steering scheme to accommodate changed ascent constraints.
In addition, it was considered appropriate to consider the use of the Cen-
taur with other booster packages (for example, Saturnor Titan), whichmight
or might nothave their own proven and operational atmospheric steering

schemes. Thus, in addition to having the atmospheric steering modular,




this initial guidance phase may be obviated altogether so that the general-
ized equations equations as presented in this report would not be initialized
until the lower stage guidance system had completed its assigned function.
The exo-atmospheric portionofthe guidance equation setis designed nominally
to begin during Atlas Sustainer flight (anywhere from sustainer ignition on)
and continues to completion of the Centaur role. Thus the exo-atmospheric
equations are nominally designed to act over two stages (this includes re-
starts of the Centaur engine), though, as suggested above no difficulty
arises if it is desired to guide only the Centaur stage with the exo-atmo-
spheric equations. The extension of the exo-atmospheric guidance equations
to cover more than two distinct stages can be easily made, though, admit-
tedly this would require a modification of the steering equations as presented
in this report. It should be pointed out however, that this limit on the gen-
erality of the equations is not at all pertinent to the stated contractual
objectives of this study, which were directed toward the Atlas/ Centaur con
configuration. Only when the question of the extent of "generalization" is
posed . or the prospect of extension of the equations to systems using more
stages than Atlas/Centauris considered, needthese limits be defined or the

means for the extension of the generality be considered.

2.5 BASIC METHODS

Before giving detailed derivations and descriptions of the explicit
equations, a brief and general summary of the methods employed in
these equations is given here so that the results and conclusions,

presented in the next section, may be more fully appreciated.

Figure 1 shows the guidance computation flow chart with the main
computational routines contained in the generalized set. Once this
guidance program is initiated it automatically directs the particular flight
to the completion of payload injection. The initial portion of the program

is that of loading the various guidance inputs. These inputs fall under

the following general categories.
a) Various constants related to the vehicle and its
respective propulsion system

b) constants needed to sufficiently define the flight orbits
to be achieved (i.e. orbital parameters, flight plane
orientations, etc.),
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c) constants which properly initiate maneuver sequencing
logic,

d) constants associated purely with the guidance equations
themselves such as initial values for starting iterations,
proportionality constants, biases, etc., and

e) constants which define certain tolerances such as
propellant pads and injection true anomaly limits,
etc.

The actual guidance computations begin with the atmospheric steer-
ing phase which continues until the sensible atmosphere is penetrated
sufficiently to permit employment of the exo-atmo spheric equations. The
equations used for this phase are designed to offer acceptable loading

characteristics for the Atlas/Centaur structure and fall under the general

category of velocity steering methods.

At a predetermined altitude the exo-atmospheric equations assume
guidance of the flight and continue in this role through payload injection.
The explicit scheme used for this portion of the flight consists of a pro-
cedure which divides logically into two parts:

a) Computation of desired cutoff conditions (i.e. velocity
only or velocity-position constraints)

b) Incorporation of the cutoff constraints for the inflight
derivation of an explicit steering regimen which will
meet these constraints.

In other words, the procedure initially determines the cutoff condi-
tions necessary to meet the current maneuver objectives, and then derives
the appropriate steering commands. Since the nature of the powered
flight problem does not permit of a sufficiently accurate analytic solution
(of any practical importance) until the powered flight time becomes quite
small, an iterative procedure is used throughout the powered flight
whereby successive approximate solutions are carried out which converge
to the sufficiently accurate solution as the burn time decreases. Thus,

the iteration loop would run as follows:

a) A cutoff position is estimated.

b) From (a) the corresponding cutoff velocity is
computed.

c) From (a) and (b) the appropriate steering signal is
generated.

d) From (b) the powered flight burn arc remaining to
cutoff is estimated from which the cutoff position
estimate is made (i.e. return to 'a').
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This loop is shown in heavy lines in Figure 1.

A "burn angle predictor" within the iterative loop is used in the
process whereby the cutoff conditions are predicted. This computation
is made by utilizing the computed angular momentum and position at
cutoff and the current angular momentum and position in conjunction with

the estimated time to go until cutoff.

The computation of the desired cutoff conditions is made by one of
two routines depending on whether an intercept maneuver is being
carried out (e.g. rendezvous, etc.) or whether an injection into a pre-
targeted conic is desired (e.g. parking orbit, elliptic earth orbit, escape
hyperbola for interplanetary missions, etc.). The former is the block
entitled "'Intercept Targeting and Required Velocity Computation' and
the latter is the block entitled ""Required Velocity for Specific Conic'.
The "Intercept Targeting and Required Velocity Computation' seeks out
a propellant optimized intercept trajectory on the basis of the estimated
cutoff position and the position of the target at intercept (see Figure 2).
The ephemeris data of the target vehicle or body, obtained from the flight
cbmputer, together with a "Free Flight Prediction' routine (see Figure 2)
is used to obtain the position of the target at intercept. Thus, in-flight
targeting is carried out for intercept maneuvers. The '"Required Velocity
Computation for Specified Conic'" routine uses the pre-launch targeted
parameters of the desired conic to compute the required cutoff conditions.
Thus, with a given estimate of the cutoff position specified, the corre-

sponding cutoff velocity is determined by two-body equations,

With the cutoff conditions specified, the steering equations
(E-steering) then derive the corresponding steering commands. This is
done by solving the corresponding boundary value problem using the
current position and velocity and the desired cutoff conditions at the
specified end points. The steering commands are developed as attitude
errors with respect to the vehicle body axes and transmitted to the control

system as attitude rate commands.

Engine cutoff is commanded by the extrapolation of a second degree
curve obtained by a fit to the '"'velocity to be gained" values just before

cutoff. Thus, when the time until cutoff falls below a specified small
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value the last three ''velocity to be gained' values are used to predict
when the velocity to be gained will be zero and the engine is shut down at

this predicted time.

With the accomplishment of engine shut down, the guidance equations
continue to function (that is, provided the role of the equations for the
mission has not been terminated) in order to determine when the next
restart should occur. This computation is designated in Figure 1 as the
"Coast Trajectory Termination Computation'. The criteria for restart-
ing are functions of the objectives of the ensuing powered flight phase and,
depending on these objectives fall under one or more of the following:

a) The ensuing burn period (or periods) can be carried

out within the limits of the propellant supply available.
(This is of course a general requirement.)

b) The ensuing burn period should terminate with an
injection within certain given true anomaly limits.
This is the injection near perigee constraint.

c) The ensuing burn period should terminate with a
position match accurate to within certain required
limits.

d) The ensuing burn period will terminate in an orbit
whose perigee is above a certain altitude.
This coast trajectory termination computation utilizes the "burn
angle prediction' routine to predict the cutoff conditions of the subsequent
burn phase and is designed to terminate parking orbits and unpowered

intercept trajectories,

The role of these guidance equations is automatically terminated by
an executive routine which issues the guidance termination discrete in
accordance with the instructions loaded into the flight computer in the

form of appropriate input constants,




3. PRE-FLIGHT ACTIVITY REQUIREMENTS

As discussed above, a primary aim in the design of these equations
was the minimization of pre-flight mission-dependent computations. The
use of explicit techniques goes far in accomplishing this objective as
previously noted. However, even with the reduction of the pre-flight
targeting effort, the equations to be presented in this report require a
significant amount of pre-computed data. This section discusses the

general extent of these requirements.
3.1 LAUNCH AZIMUTH DETERMINATION

It is assumed that the launch azimuth variation with launch time has
been predetermined and is available to the vehicle guidance system as an
input when the liftoff time has been established. This is the procedure
used in the current Atlas/Centaur configuration. Thus, part of the
development of an operational system using the guidance philosophy
presented in this report, would be the determination of a body of launch
azimuth information correlated with particular mission characteristics
and launch times. This launch azimuth information might be made
available in say, tabular form to a human controller, who, when the
launch time were established, would manually ''dial" the proper launch
azimuth into the vehicle guidance system. Alternatively the launch
azimuth information could be provided in the form of launch time
dependent polynomials, programmed either in a ground based computer
or in the flight computer (the former seems more attractive from the
standpoint of limiting on-board computer capacity requirements). With
these polynomials the launch azimuth computation would be a part of the

automatic guidance system with no need for the human intermediary.

A brief look was taken at the advisability of attempting to develope
an analytical non-empirically derived expression for the launch azimuth
which would be a function of the launch time and the desired orientation
of the initial orbit plane. Such a procedure was developed on a preliminary
basis and it was found that it would, in general, require the knowledge of
the orientation of the observed orbit, or equivantly its unit normal. This

orientation is very strongly associated with launch window limits which in
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turn are based on paylaod capabilities. These limits must be determined
before launch since the guidance equations are not sufficiently accurate at
launch to predict payload capability of the boost and injection system. The
process of determining these limits however involves the generation of
acceptable launch azimuth data. It would therefore appear that the utiliza-
tion of this launch azimuth information obtained in the activity described
above, in the form of tables or polynomials would be more economical
than including additional logic in the equation package to compute what

has already been determined elsewhere. Thus for these reasons it was
concluded inadvisable to include an explicit launch azimuth determination

routine.

It might be pointed out however, that if the guidance equations were
made capable of predicting payload limits with any precision at launch
than an explicit routine for launch azimuth might then become appropriate.
Any continued development in the area of generalized guidance equations

should consider this possibility.
3,2 PRE-FLIGHT TARGETING

By targeting, is meant here, the generation of the proper values for
those quantities that appear in the guidance equations and which are
dependent on the nature and objectives of the mission to be flown and the
vehicle configuration. In dealing with explicit guidance equations the
targeted quantities are principally those which describe the orbit to be
achieved rather than coefficients for required velocity and/or steering
polynomials as in perturbative and open loop techniques. The pre-flight
targeting effort for the guidance equations discussed in this report there-
fore falls into the following categories:

1) Determination of Atmospheric Steering Coefficients (See
Section 5. 8): For a given vehicle this determination

could be done only once which would establish a standard
ascent through atmosphere profile.

2) Determination of Exo-Atmospheric Steering Biases
and Computation Switching Parameters (See Section
5.2): These are quantities which detailed per-
formance analyses (See Section 6) indicated would

- optimize the performance of the equations. They
compensate for the effect of staging discontinuities
and specify when the switching between different steer-
ing modes should be accomplished. The values for
these quantities were found to be generally mission
dependent.
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3)

4)

5)

Determination of Desired Orbit Defining Parameters
(See Section 5.3): These parameters are orbit
parameters such as eccentricity, semi-latus rectum,
etc., orbital inclinations, perigee magnitude and
directions, target vector, and various other quantities
which appear explicitly in the required velocity
equations and are highly mission dependent.

Target Ephemerides: As explained in the body of the
report (See Section 5. 3.1) the guidance used to carry
out intercept maneuvers requires a knowledge of the
ephemeris of the target. Thus for such intercept
maneuvers the appropriate ephemeris data would need
to be determined and provided to the flight computer
prior to launch.

Other Miscellaneous Mission Dependent Quantities:
These are such things as control system gain constants

which might be vehicle configuration and therefore mission

dependent, satisfactory propellant pads, injection
true anomaly, limits, etc.
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4. SUMMARY OF RESULTS

4.1 SUMMARY OF COMPUTER REQUIREMENTS

As stated previously the principal criterion for establishing the
feasibility of using a highly generalized set of guidance equations is how
well such a set of equations can be accommodated by an advanced flight

computer which is judged to be within the current state of the art. Three

such computers are:
MIT/Raytheon Apollo Computer

Univac 1824
LEM AGS Computer, MARCO 4418 of TRW Systems

The LEM AGS is representative of these general purpose high speed
machines so that requirements imposed on this machine by the generalized
guidance equations of this report were taken to establish feasibility from

the computer requirements standpoint.

Table 1 summarizes the results of capacity and timing requirement
estimates made on the LEM AGS for the guidance equations alone. The
estimates were made from the guidance equation flow charts shown in
Section 10. The entries in Table 1 are on a flow chart by flow chart basis.
Flow charts 2, 3, and 4 comprise the self-targeting routine for intercept
guidance. The table shows timing estimates for the cases when this loop
is deleted, when three cycles around this loop are made and when 15 cycles
around the loop are made. These different values are given in order to:

a) show what the timing requirements would be if the self

targeting loop were removed thus removing the ability
of the equations to perform intercept guidance.

b) show the timing requirements during the powered portion
of an intercept maneuver where three iterations around
the loop are made.

c) show the timing requirements during the coast period
preceding the powered portion of an intercept maneuver
where as many as 15 iterations around the loop are
made.
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Table 1 also gives the total storage locations and timing requirements of

the current Centaur -3 Librascope computer.

It can be seen from this table that the -3 machine requires some-
what more locations than the LEM AGS machine. The reason for this is
the fact that the -3 is a drum machine and has a limited indexing
capability., This means that different coding procedures are employed and
additional logic must be provided in the -3 machine to perform the indexing
function. The -3 computer has a total of 2800 locations available so it can
be seen that programming the total guidance equation package barely leaves
room for any of the other computer functions. If the self targeting feature
of the equations is deleted (which eliminates the intercept guidance capa-
bility) there are about 1000 locations available for other functions, but the
loss of the intercept capability constitutes a serious retreat from the
position taken in the ground rules section of this report. Table 1 also
indicates that the timing requirements imposed by the complete equation
package are beyond practicality. This conclusion is supported by past
experience and more explicitly, by a study entitled "Preliminary Study of
Explicit Guidance Control System Interface for Atlas/Centaur', repro-
duced as Appendix A. Reference to this study shows that in order to
preserve Atlas/Centaur control system stability, sampling periods of
greater than 5 seconds can not be tolerated. Thus the requirement of
more than 13 seconds indicated in Table 1 is quite out of limits. Note
however, that if the self targeting feature of the equations is eliminated,
the timing requirements are less than 3 seconds so that again, for a
version of the equations which did not include an intercept guidance

capability, the current Centaur machine might be acceptable.
In summary then, Table 1 shows that:

a) the current Centaur -3 Librascope computer is not
adequate to handle the complete generalized equation
package.

b) the current Centaur computer might be able to handle
a reduced version of these equations (see the discus-
sion below associated with Table 2 for a more com-
plete answer to the question).




c) from the standpoint of timing requirements the LEM
AGS (or a similar computer) can easily do the job,
based on the requirements put forth in the study dis-
cussed in Appendix A,
Whether the LEM AGS and similar machines can meet the require-

ments with respect to instruction locations is discussed below in con-

junction with Table 2.

Table 2 gives an estimate of the total memory locations needed to
program the equations of this report plus the other computations usually
required of the flight computer. It can be seen from the table that the
guidance equations form the largest single part of the total requirement
but that the other functions are by no means insignificant. The table is

given in terms of four options. These options are as follows:
Option I

This option includes those computational functions which this report
considers advisable to include as the responsibility of the on-board com-
puter. Since the Centaur GSE is now being modified to include a separate
ground computer to relieve the inflight computational load, it is a distinct
possibility that that capability might be carried over to an advanced Centaur
also., Some of these pre-flight computations are alluded to in the text of
the report (e. g., the generation of the transformation from the equatorial
oriented inertial to the platform coordinates, the computation of launch
azimuth, and the calibration and alignment procedures, etc.). It was also
felt that since it is, at present, difficult to identify a real requirement
for the processing of externally received data, the memory requirements
for these computations should be considered only for a maximum capability

system.
Option II

This option included all the computer functions which might con-
ceivably and reasonably be performed by the flight computer. This option
can be viewed as a maximum system which provides an upper bound to

the total computer requirements for an advanced Centaur guidance system.

Option IIT & IV

Reference to Table 1 shows that the largest contribution to the com-

puter memory requirements is due to the self targeting or intercept
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guidance feature of the guidance equations. Option III and IV gives the
total computer requirements for the cases of Option I and II respectively
if the intercept guidance capability is deleted from the equations. These
last two options illustrate, in terms of practical requirements, the price
paid for incorporating intercept guidance iﬁ a generalized set of equations.
The requirements specified in these last two options also gives an indi-
cation of how far the guidance software can be modified before the capa-

bilities of the current Centaur computer begin to be exceeded (see below).

Table 3 gives a summary of the characteristics of three representa-
tive advanced computers and the current -3 Librascope Centaur computer.
A comparison of the data in Table 2 with the computer characteristics
given in Table 3 shows that any of the advanced computers can accommo-
date the memory location requirements of even the maximum system of
Option II. However, it can be seen that only with the most extreme
"'squeezing' could the minimum requirements of Option III (which has no
intercept guidance capability) be accommodated by the current Centaur
computer. In this connection it should also be pointed out that the current
Centaur computer has available only about 1800 memory locations for
in-flight computations, the remainder of the total 2800 being used for pre-
flight computations. In addition, the current Centaur configuration does
not provide a feasible method for continuous switching from one or the
other of these two portions of the memory, so that even if the '"'squeeze"
could be accomplished the computer would need to be modified to provide

facile access to either of these sets of memory tracks.

In summary then, from the information given in Tables 1, 2, and 3

the following conclusions can be stated.

1) The total computer requirements for an advance guid-
ance system using generalized explicit guidance
equations can be met by any one of the three advanced
computers of Table 3.

2) The current Centaur computer could not accommodate
a system which employed generalized explicit guidance
techniques and which included a capability to perform
intercept guidance.

3) The current Centaur computer would possibly accomo-

date a system which did not have the intercept guidance
capability, but only under the following conditions
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a) extreme economy in computer function requirements,
equation formulation and memory utilization.

b) Modification of -3 computer to allow use of total
memory for inflight computations.

4.2 SUMMARY OF PERFORMANCE RESULTS

This section gives a summary of the results of the performance
analyses made on the guidance equations presented in this report. The
performance results were obtained from simulations using TRW System's
N-Stage program. The current Atlas/Centaur vehicle model using an
A/C-8milestone was used, with various sections of the equations perform-
ing appropriate guidance functions. Time and resources did not permit
the evaluation of all of the features of this equation set, but an effort was
made however to simulate those segments of the set which would give
indications of the capabilities and accuracies obtainable. Also the
simulations were used as development tools in the design of certain

features of the equations.

The portions of the equations which were simulated and for which

results are quoted in this report are:
1) Injection into a 90 n. mi. circular parking orbit
2) Injection into a hyperbolic escape trajectory

3) Injection into an intercept trajectory for interception
of a low altitude satellite

4) Injection into a translunar trajectory using intercept
guidance.
Table 4 summarizes the performance results obtained with the
simulations. The table by no means gives all of the results obtained,
but does give those results which it is felt demonstrate that the
accuracy capabilities of the equations are quite satisfactory. For more
complete presentation and discussion of the results, the results section of

the report should be consulted.
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5. THEORY AND DERIVATIONS

5.1 DESCRIPTIONS OF COORDINATE SYSTEMS

5.1.1 Inertial Coordinate Systems

5.1, 1.1 Platform Coordinate System

The inertial coordinate system employed to implement the equations
presented in this report can be chosen as any which is convenient for the
purpose to which the equations are to be used. For the purpose of the
Atlas/Centaur it is convenient to use a u-v-w inertial coordinate system,
which is an orthogonal triad related to the accelerometer input or inertial
platform axes. The origin of this system is located at the center of the
earth., The w-axis is along the negative of the measured gravitational
acceleration vector at the launch site. The u-axis is assumed to be
aligned to the particular alignment aximuth of the pad to be used (say
105° for pad 36A or 115° for pad 36B at Cape Kennedy) and the v-axis
completes the set so that the u-v plane is parallel to the launch site

horizontal plane at "go-inertial."

5.1. 1,2 Pitch Plane Oriented Inertial

For the Atlas/Centaur the booster pitch profile shaping is assumed
to be constant across both the launch window and launch opportunity,
although the azimuth of this plane is variable across both the window and
opportunity. It is therefore convenient during booster steering to use
variables expressed in a coordinate system which has two axes defining
a plane co-incident with the pitch plane and the third axis normal to the
pitch plane. This is accomplished by defining a second coordinate sys-
tem the u'-v'-w' system which is obtained by rotating about the w-axis
an angle equal to the angular difference (A u) between the platform azi-
muth (u-axis) and the trajectory azimuth. The latter is determined at
the actual time of launch. The u' axis then lies along the intersection of
the pitch plane and the launch site horizontal plane and the v'-axis
completes the right handed set. Both of these coordinate systems (the

u-v-w and u'-v'-w') are shown in Figure 3.
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5.1. 1.3 Equatorial Oriented Inertial

A third coordinate system should be mentioned at this point. This
is the coordinate system in which pre-determined, mission describing

vectors are initially expressed., These vectors (5, ERP’ :)'-, ?T — see

below for definitions) are determined prior to launch and must be con-
verted to the platform coordinate system after this latter system is
determined by the launch time. The coordinate system in which these
vectors are assumed to be given is earth centered with the z' axis the
polar axis and the x'-y' plane the equatorial plane. The specific orienta-
tion of the x' and y' axes in the equatorial plane is not essential to the
purposes of this report. It will be seen in Section 5. 7 that this is the
coordinate system in which the numerical integration is carried out for

the solution of the navigational parameters.

5.1.2 Earth Fixed System

To assist the development of load relief capability and to preclude
the possibility of excessive loads or heating, it is useful to formulate the
atmospheric steering law (see Section 5. 8) in terms of quantities
measured with respect to the nominal motion of the air mass. This is
easily done by using a coordinate system, X=-Y-Z, which translates with
the air mass. To reduce position variable scaling problems, the origin
of this system is placed at the launch site. At launch, the axes of the
X-Y-Z systems are parallel to the u'-v'~-w system axes respectively but
the origin of the X-Y~Z system has, forever after launch, a velocity
with respect to the u'-v'-w system which is equal to the launch site
inertial velocity (\—/'o') at liftoff. * This X-Y-Z system is shown on Fig-

ure 3 t' seconds after liftoff.

5.1.3 Exo-Atmospheric Coordinate System

The exo-atmospheric computational coordinate system (henceforth

called the computational system) is shown in Figure 4. The x, y, z

*This is not truly an earth fixed system since the origin in an earth fixed
system could not execute rectilinear motion as does the X-Y-Z axis
after launch, However, for the purposes of atmospheric steering here,
the motion of the X-Y-Z system approximates the motion of the air mass
to a completely adequate degree.




system is a rotating right handed frame. The z axis is along the projec-
tion on the desired flight plane, of the instantaneous position vector T of
the vehicle. The y axis is normal to the desired flight plane and the x
axis completes the right handed set. The desired flight plane is defined
by specifying a unit vector :i-whi.ch is normal to the desired flight plane.

In terms of T, j and ¥ then,

X = o

y =T-j

- 2 2
z = r° -y
§=?_-z¥i
e (1)
i=jxk
v. = ¥e+i
X

v. = ¥Ve3j
y J
yz=\_r-1?

where T, j and Vv are expressed in some convenient inertial coordinate

system,
5.2 EXO-ATMOSPHERIC STEERING EQUATIONS (See flow chart 6)

This section of the report gives a derivation of the upper stage
steering equations, i.e. , the exo-atmospheric explicit steering equations
used for the Atlas Sustainer and Centaur Stages. These equations are
explicit because they are completely independent of any reference trajec-

tory and require no nominal trajectory related pre-computed coefficients.

The derivations begin by assuming that the second derivatives of
the y and z coordinates of the computational system are linear functions
of time, except for a jump change in Z at the staging point. These

quantities can thus be expressed as
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y = A+Ct (2)
z = B+Dt 0=t=T, (3)
z = By +Dt T <tsT (4)

In these expressions time t is measured from the present time, TS is the
time to go to staging, and T is the time to go to cutoff. Itis assumed
then that the coefficient B is used during the sustainer burn, and that B

1
is used during the Centaur burn.

If the above equations are integrated once, the results are

2
yt) - y(0) = at+ct (5)
and
Dt?
z(t) - z(0) = Bt +"‘2— (0=t = TS) (6)
tZ
ey L _ ) t< <
z{t) - z(0) B Ts + Bl(t Ts) + D 3 (Ts <t T) (7)
Evaluating these expressions att = T, the results are
TZ
yp - ¥(0) = AT +C = (8)
and
. T2
rD-z(O) = BT, + B, (T-Ts)+D—2— (9)

where it has been assumed that y(T) = y‘rD, and z(T) = i'D, i. e. , the final

values are equal to the desired values.

If the expressions for y(t) and z(t) are integrated fromt =0tot =T

the following equations can be obtained:

T3

2
yp - v(0) - §(0) T = AT—2+C—Z (10)
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and

T B 3

rD—z(O)-i(O)T=BTS(T__2_S)+_21(T_TZ)2+DTT (1

where it has been assumed that y(T) = and z(T) =r

¥p D

Further simplification occurs if it is assumed that

B1 = B+ AB (12)

where AB is a known quantity., The in-plane equations then become

2
i - 2(0) - AB (T-T ) = BT+DT—'2— (13)
- 2(0) - 2(0) T - 2B (1-T )2 = 13'—1‘—?:+2T—3 (14)
I'p -2 z 2 s’ 2 6

The right hand side of these equations are now of the same form as

the yaw equations, i.e.,

. ':[‘2
yp-y(0) = AT+C =5 (15)
2 3
. T
yp - ¥(0) - 7(0) = AT+ C iy (16)

These equations can now be solved in two separate ways., If both
position and velocity constraints are to be met then the pairs of equations

must be solved simultaneously, which gives

B = -ﬁ fD'i(O)’AB(T-TS)I +Tiz [rD-Z(O)_i(o)T_A__ZB(T_TS)Z
(17)
and
_ 2 |- 6 .
A = ";2 IYD‘Y(O)I +F [YD‘ y(0) - y(0) (18)
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There is no point in solving for the C and D coefficient because at

t = 0 they drop out of the expression for y and Z.

On the other hand, if only the velocity constraint has to be met, then

the position equation can be ignored, which leads to the expressions

r— - z(0)
_ _D T _AB r_
and
Yyp~ ¥ T
A = T -C > (20)

In these expressions it has to be assumed that C and D are known
quantities. In the flow charts is has been assumed that C = 0, but the
D coefficient has been ihcluded. It was felt that there might be some
advantage to using a non-zero D coefficient, e. g., in order to improve

efficiency.

The mechanization given in the flow charts includes both the

equations for position and velocity constraints (v, = 0) and the equations

2
for velocity constraints only (v2 =1)

The equations of motion in the rotating computational frame are

vo= A
A (21)
and
2
.. Lz Vx
z = ar Caz - r3 + z (22)

where Ca and Caz are the direction cosines between the acceleration

vector and the j and k axes, respectively.
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These equations can be solved for Cay and caz as follows

= L A
cay ® A A+ r3] (23)
2
N | z Vx
Caz = 2 |Bte—3 - (24)
T r

where it has been assumed that ¥ = A and z = B,

The reason for assuming that there is a jump change in B at the
staging point can now be explained. It has been found from calculus of
variation solutions that the direction cosine, Caz’ should be continuous
at the staging point. However, if B is continuous then the change in ap
at staging will cause a discontinuity in Caz. Hence, a discontinuity must
be introduced into the B coefficient which will just cancel the discontinuity

in ame In order to have continuity in Caz at staging we must have

By - 2pg) Gy, =B, -B=aB (25)
t=T
S
where amy is the acceleration at the beginning of Centaur and 2 is the
acceleration at the end of the sustainer stage. In order to solve for AB

it is necessary to know Caz t=T ° Since the burning time of the sus-
s

tainer stage is fairly short, it can be assumed for the sake of simplicity
that

C

azlt:=Ts Ca.z|1:=0

The equation which was finally mechanized was

AB = K91 C_, (26)

where

K =

91 (ap, - a

TO)
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The entire discussion up to this point has assumed that t = 0 was
some time prior to staging, Essentially the same results are obtained
if t = 0 is subsequent to staging, except that it is necessary to assume
AB = 0, This assumption removes all the terms containing TS from the

expression for A and B, which might be expected.

Now it remains to obtain a suitable expression for the reciprocal of
the thrust acceleration, 1/a(t), and the time to cutoff, T. For 1/a(t).
a suitable expression, which will not blow up for low or zero sensed-
accelerations, and which takes advantage of the filtering effect of an

integration, can be derived in the following way.

Let VC be the total thrust velocity accumulated by the stage up to

the time of the current computation, t. Then

t

V_(t) = [ ap(t) dt (27)
0o

where t = o is the time of initial ignition of the engine. From the rocket

model chosen we have that

Ve
ap(t) = = (28)
o
— =t
m
which when substituted into Equation (27) and integrated gives
V. = -Veln [l -—t— (29)
¢ mo
m
or
m v
—2 .t -TC
m
—=c (30)
—°
m




Dividing both sides by Ve and noting that

Ve rh aT(t)
and
m
o 1
= (32)
mv_ 2rl)
e
we get
v
.- <
1 _ 1 Ve (33)

ap(t) ~ arlo) €

Expanding the exponential in a Taylor series the expression becomes

2 3
S R TEA A
aT(t) aT(o) Ve 2 Ve 6 Ve

finally

+] (34)

To determine the time to burnout, T, the scheme used must account
for the fact that two different stages* may be used to null a given \—/'g.
That is to say, the explicit guidance equations have been developed so as

to be able to direct the flight from some time during the sustainer stage to

*The scheme can be used to guide more than two stages with a few simple
modifications provided that the thrust velocity capability of all but the
last stage can be specified prior to flight.
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ultimate burnout of the Centaur stage. Thus the scheme for computing T

is developed as follows.
From the rocket model, we have that

V. m
ap(t) = 55 (35)

But, the vehicle mass at first stage burnout, m, the present mass, m(t),

and the mass rate are related by

m(t) = mf-l-rirxTS (36)

where T is the time to first stage burnout. Thus substituting (36) into

(35) and inverting we have

1 s
= -t (37)
aT(t) Vem Ve
and solving for Ts’
Ve mf
T = ——-— (38)
s aT(t) "y

gives the time to burnout of the first stage.
The time to go for cutoff of the second stage can be computed as

follows. Rearranging Equation (28) we have

V m
aplt) = _e_z_t (39)

Integrating from the present (t = o) to cutoff of second stage (t = T)

T .
V. m m
v(T) - v(o) = —€ & 4t =V In—2— (40)
t e . T
m -1m m -m
o o 2 o 2




But

v(T) - vlo) = Vg (41)

where Vg is the velocity to be gained by the second stage. Thus

_ o
Vg = Ve lnm - T (42)
o 2
or, expressed in exponential form
A% thT
exp ’Vg‘ = 1-— (43)
el o

where the subscript 2 refers to the second or Centaur stage.

Expanding the right hand side in a Taylor series and performing

some rearrangement we get

2

m V 1 Vv 1 Vv
T = —° 8|1 -2[/B)+x(-B) -... (44)
. 2\ Vv 6\V
m_V e2 e2
2 el
Then, noting that
m
- 2 el
aT(t) -
o
Equation{36) becomes finally
Yoo () ()
T = 1-—= + - +iee (45)
aTt 2 veZ 6 VeZ 24 VeZ

When the two stages are used consecutively to null a given Vg Equa-
tions (38) and (45) are used if the computation is made during a first stage

burn. That is, the time to go, Tg’ until second stage cutoff is



2
v m A4 v
T =T_+T = |—=2 f1]+-17~[1-—1- Bt (A
g s aTl(t) am 2 VeZ VeZ.

1 (Vg ’
"2 \V,, +] (46)

1 — first stage

where subscript

2 — second stage

a,!r = the initial acceleration of the second stage

If the computation is made during a second stage burn, then Equation (45)
is used alone with the reciprocal of the acceleration given by Equation (34).
It might be noted here that in the development of these equations it

has been assumed that the sustainer stage will never be called upon to
complete the nulling of a Vg which has been computed using the explicit

(or exo-atmospheric) guidance equations. This means that the equations
restrict the use of the sustainer to that of a part of the boost system only
with the Centaur stage always performing the actual payload injection.
However, minor modifications to the equations presented here would pro-

vide the capability to perform missions in the suborbital * start mode,

Equations (34), (38), (45) and (46) allow the determination of any of
the direction cosine commands given by Equations (23) and (24) required
by maneuver constraints, The Equations (34), (38), (45) and (46) in
general give expressions by which the direction cosines are given as a
function of the time from the computation. Thus, ideally it might be pos-
sible to compute the A and B coefficients only once and have explicit
expressions from which the direction cosine requirements could be deter-
mined from the start of guidance to shut down. In practice, however, the
determination of y(T), y(T), z(T) and z(T) involves certain inaccuracies

which, as cut off is approached, become smaller and smaller (see below).

b
Suborbital coast between sustainer burnout and Centaur ignition.
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Thus the A and B coefficients accordingly are initially inaccurate and
must be recomputed periodically if satisfactory terminal conditions are to

be achieved.
5.3 EQUATIONS FOR PREDICTION OF CUTOFF REQUIREMENTS

The steering equations developed above require for their imple~
mentation two or more specified cutoff conditions, That is, depending on
the manuever to be performed, at least two of the four quantities, y(T),
y(T), z(T), z(T), must be specified. The means of obtaining these

quantities is described in this section.

Essentially two routines are used to find the cutoff requirements.
One routine is used for intercept maneuvers, where the Centaur is
required to inject itself into an orbit which will inte rcept a given point
in space at a given time. This routine is used for the on-board targeted
intercept portions of rendezvous missions, Syn-Com missions, and for
translunar missions. The second routine is used where the desired orbit
is one which can be targeted prior to launch. These are taken to include,
parking orbits and other earth orbits, interplanetary and pre-targeted
translunar trajectories. The first routine will be called the "Optimum
Intercept Targeting Routine" and the second the "Specified Conic Routine."

These two routines are described below.

5.3.1 Optimum Intercept Targeting Routine (See flow charts 2, 3 and 4)

5.3.1. 1 P-Iteration

This routine assumes two body dynamics, and specifies a conic on
the basis of two points in space and a free fall time T 12? between the two
points, The computation proceeds by first assuming a value for hD’ the
desired angular momentum on the transfer ellipse, and computing the
corresponding free fall time to go from T to Tr. This free fall time is
compared to the required difference, tT - tD. Newton Raphson iteration
is then used to find the value of hD which causes the predicted free fall
time to agree with (1:T - tD), once convergence has been obtained the
desired velocity, ‘_’D’ is computed from the parameters of the computed

transfer orbit.



The particular algorithm used here for computing free fall time
was developed at TRW Systems Group by F. A, Evans. It has the advan-
tage of being valid even for zero eccentricity orbits. The development of
these equations proceeds directly from Kepler's equations, which gives

the free fall time between ;D and ?T as

3
\/; [MT - MD\ (47)

12 T

where
MT = ET - e sin ET (48)
Mp = Ep - esin Ep (49)

where ED and ET are the eccentric anomalies at rh and T respectively,

on the transfer orbit.

The above equation can be rewritten as

3
= a_ - ; i
T, T Vp. [AE esinEp +esin Ey (50)

where

AE = ET-ED

Ordinary trigonometric identities then give

cos AE = cos ET cos ED + sin ET sin ED (51)

sin AE = sin ET cos ED - cos ET sin ED (52)

The following selections from astrodynamic theory are then quite

useful

e + cos f (53)

CQSE'—'1+ecosf




vl - e2 sin f

l +ecosf

sin E = (54)

where f is the true anomaly.

If these expressions are used in the cos AE and sin AE equations the

results are

cos ¢ + e cos fT + e cos fD + ez - (e sin fT)(e sin fD)

cos AE = (55)
1l +e cos fT + e cos fD + (e cos fT) (e cos fD)
J/ 21| . . .
l-e s1n¢+es1nfT-eS1nfD
8in AE = 1 +e cos fD + e cos fT + (e cos fT) (e cos fD) (56)
where

The angle AE is then given by combining the above two equations,
which gives

J PARER
1 -e (s1n¢+C4-C3)

cos ¢+ C

1l

AE tan

(57)

2
1-l-C2+e -C3C4

where

C1 = e cos fD
C = e cos fT
C3 = e sin fD

C4 = e sinfT



The values of Cl and CZ are easily obtained from the standard

equations
c, = ;P]—) -1 (58)
c, = ?% -1 (59)
where
p = %—9 (60)

Then, using the fact that ¢ = fT - i5s the following expressions can
be obtained:

e cos fT = e cos fD cos ¢-esinfD sin ¢ (61)

e cos fy = e cos f; cos ¢ + e sin fr sin ¢ (62)

These equations can be rearranged into the forms

(e cos fD) cos ¢ - e cos fT

e sin fD = sin o (63)

e cos fD - (e cos fT) cos ¢

e sin fT = sin ¢ (64)

Using the previous notation, these equations become

C1 cos ¢ - C2

€3 = sin ¢ (65)
C, -C, cos ¢
_ 1 2
C4 - sin ¢ (66)
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From the definitions of Cl and CZ it is clear that

2 _ 2 2
e” = C,“+C, (67)

The semi-major axis, a, can then be computed from

a = —P (68)

The sine and cosine of the range angle, ¢, are computed from the

relations

cos ¢ = —= | (69)

and

sin ¢ = £ V1 - cos ng (70)

The quantity sin ¢ is first assumed to be positive, and the unit
vector IT normal to ED and lying in the plane of ?D and ET is then com-
puted. The dot product of i and L will then be positive if the sign of
sin ¢ was proper, and will be negative otherwise., If a negative is obtained

then the signs ofIT and sin ¢ are changed appropriately.

The other quantities needed in the computation of T, , are
C5 = e sin Ep (71)
and
Cy = esin Ep (72)

The following equation can easily be derived from two body

relations:

V1 - eZ (e sin f) (73)

e sin E = £
P
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therefore,

r
c. = ?D VI e c, (74)

r
c, = L V] -2 c, (75)

The total time expression is then

2

S|Vl -e” (sin ¢ +C, - C

L - ava | b -C, +C (76)
N cos 9+ C +C, +te“-C;C,

Since radial velocity is given by
i =Resging (77)
P

the desired radial velocity cut off is clearly

h
o= 2¢
P

D (78)

3
Since angular momentum is defined as the cross product o;‘il? and V

it is evident that the desired tangential velocity at cutoff is just D, The

r

total desired velocity is then D

_ Tp), "'p -
D = 5 C3(rD}+ = lp (79)

Similar reasoning is used to compute ’\FT', the velocity on the trans-
fer ellipse at time to. The only difference is that the unit vector in the
r, T
tangential direction is given by cos ¢ I. 2 sin ¢ |.
sin ¢ rT rpy
Provision has also been made in these equations to handle the case
where the free fall time is greater than the period of the transfer orbit.

The rcquired free fall time, tT - tD , is tested against the period, P, of
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the transfer orbit. If tr - tp is greater than P then T, is increased by

12
P. This procedure has been found to be necessary because the search

logic will sometime require transfers through more than 360 dgg.

It has been found that the p-iteration equations will not operate cor-
rectly if transfers very close to 180 d?g are required. This problem will
arise no matter what scheme is employed because the plane of the trans-
fer orbit is no longer defined in that situation. In order to avoid this
problem a test is made on sin ¢ to make sure it is above a minimum level
defined by K31 .

flight prediction routine and increases to until ;T is driven away from the

If it is not then the program transfers back to the free

180 dgg position.

5.3.1.2 Powered Flight Prediction. (See flow chart 6)

As described above, in order to make the p-iteration computation,
the end points of the unpowered flight are required as well as the length of
time of the unpowered flight. One end point is of course the cutoff point
of the current burn period (which is seeking to inject the vehicle into the
desired orbit). This end point designated as rp can be estimated as

follows:

We have that the expression for angular momentum is

or in terms of finite differences and average values,

T,
A¢p = 7 At = ”—M‘ZT (80)
(r) (r)

where A¢ is the arc traversed in the T seconds to cutoff and where T is,
as before, the remaining time for the current powered phase. An esti-
mate of A¢ which becomes more accurate as cutoff is approached, can be

made by assuming linear change in h and r. Thus if

W 1
h = ~2'—(hD+h) (81)
= %(rD+r) (82)
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we get

h + hD
A = 2 — T (83)
(r + rD)
where
h =zv
X
given by the final computation for hD for the intercept case
h.. =

given by «/up for the specified conic case

The value of rn is pre-specified for the case of injection into a
specified conic. For the case of an intercept orbit the value of rh is not
prespecified (although it could be) but it can be derived by integrating
Equation (3) twice with D = 0, Thus

T t
z(t) = / fBo drdT + z (84)
(o] O
r = 2z(T) = +B T?+%2 T+2 (85)
D 2 o o

Similarly, a double integration of Equation (2) with B = 0, yields for the

desired out of plane cutoff position Yp

. A T?
yp = ylt) = y+yT+——— (86)

With A6, z(T) and y(T) available, the desired cutoff position is

fD = z(t) cosAg¢k + z(T)sin A¢i + y(T)j (87)

and we have thus established the first endpoint for the p-iteration compu-

tation.

5.3.1.3 Free Flight Prediction (see flow chart 2)

The second end point needed for the p-iteration computation is that
of the target at the desired time of intercept. (See below for the method
of selecting the time of intercept. ) The term target, however, can have
three different meanings depending on the mission being flown. For a

rendezvous mission the target is another orbiting space vehicle. For a
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synchronous comsat mission the target is a point in space at the earth
synchronous altitude and on a radial specified by the desired longitude of
the satellite. For a translunar mission where the translunar trajectory
has not been pre-targeted, the target is some pseudo aim point at some
specific offset from the moon. In all of these cases the target's motion is
predictable T seconds from the present provided the present position and
velocity are known. Thus, for the rendezvous and lunar missions the
corresponding ephemerides must be obtainable from the on board com-
puter., For the com-sat the simple relation describing a circular equa-

torial orbit at synchronous altitude is sufficient.

With the initial conditions given, the expressions for the target's
position and velocity T seconds later can be derived as follows. (See Ref-

erence 2 and 5)

Let P = a unit vector in the perigee direction

Q

a unit veetor normal to P and in the orbit plane.

Let the origin be at the perifocus with the X and Y axes directed
along P and Q respectively then

T = XP+YQ
T = XP+7YQ (88)

Solving (88) for P and Q we get

= _ Y¥r-Y¥
P =33 -vx
=~ _ Xf-XF
Q = xv - vx (89)

Now for an ellipse (See Reference 2 and 5)

a(l - e cos E) ]

H
N

X = afcos E - e)

Y = a(l'eZl/ZsinE

; (90)
)'( - = (ua.Ll/2 sin E
r
Y = [ua(l - e?)1'/2 2= B )
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Substituting (90) into (89) and after some manipulation P and Q become

_1:_’=Q:—E'f-\/%sinE? (91)
S [ e o

Now, if t is the present time, At is the remaining time of free flight and
T is the time of rendezvous.

Tt + At) = F(T) = X(T) P+ Y(T) Q (93)
¥(t+At) = F(T) = X(T) P+ ¥(T) Q (94)
Substituting equations (90) into (93) and (94) gives
- ,1/2 _
r(T) = alcos ET -e)P+al(l -e“) sin ETQ (95)
Via sin E _ cos E.\ _
HT) = -——L B +'pa (1 - 2) ! (——l)o (96)
rT 2 rT
and substituting (91) and (92) into (95) and (96)
3 .
r(T) = %[COSAE -ecos E]T + i—[sinAE + e (sin E - sin ET)]}'
(97)
T(T) = -E2 40 AET + -a—[cosAE - e cos E ]? (98)
T T T T
From (90) we have that
= _r
ecosE =1 5 (99)
From Kepler's Equation
M = E -esinE

or

\/-a%(t-'rp) = E -esinE (100)

where Tp = time since perifocal passage.




Similarly at T = t + At

,/i%(HAt-TP) = Ep -esinEg (101)

Subtracting (100) from (101) we get

- 1 = - 1 i_&.
ET e sin ET E-esinE + a3 At (102)
or
. . _~Nu
e (sin E ~ sin ET) == At - AE (103)

a

Sut stituting (99) and (103) into (97) and (99) into (98) gives, finally

F(T) = 2f cos aE - (1 -f)‘ 4 |at - \/;:(AE-sinE) |3 o
#(T) = -}J“/;“:—E“sinAE'r'+ [f‘; cosAE + (1 -;a;)] T (105)

Equations (104) and (105) can be used as free flight prediction equations
provided AE is available. However since it is more convenient to treat
the coast arc time, At, as the independent variable, AE must be derived

from At. This can be done as follows:

We have for an ellipse (See Reference 5)

M o= Y
Mp-M o= 5 A (106)

where M is the mean anomaly. Then, utilizing Kepler's Equation,

AM = M,,-M = E_ -esinE_-E+esinE

T T T
or
AE = AM+esinET-esinE (107)
Now
sin ET = sin (E + AE) = sin E cosAE + cos E sinAE (108)
Therefore,

AE = AM + e sin E [cosAE - 1]+ e cos E sinAE (1 09)
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For an ellipse (See Reference 5)

- _r
ecos E = (1 a) (110)
esinE = {7:;1 (111)
so that
_ T r . _r\ .
AE = aM +3EF [cosAE - 1]+ (1 L) sinAE (112)

Equation (112) is transcendental in AE so that an iterative solution for AE

must be used. For this purpose we can write

AEK = AEK -1 df[AE) (113)
dAE
where f(AE), the error function, is defined from (112) as
- - - hd _ _ _x s
HAE) = AE - AM - =¥ [cosAE - 1] (1 a) sinAE (114)
Then from (114)
df(AE) _ T.T . (i _r
QAE} = !t sin AE (1 a) cos AE (115)

The iteration is repeated often enough to insure the required accuracy.

5.3.1.4 Selection of Optimum Coast Arc Time (See flow chart 4)

The means of selection of an optimum time for the intercept coast
arc will now be discussed. The basic purpose of the procedure is to
search for a time of intercept, tT’ which will result in the consumption of
a minimum of propellant. This propellantis the sum of that needed for
injection into the intercept orbit and that needed for the second burn (i. e.
injection into the synchronous orbit for the ComSat, or the final closing
maneuver for rendezvous). An additional constraint is that the minimum
13° If this

constraint cannot be met, then the search is carried out to find the tT

altitude, oy of the intercept arc be above a certain value, K

which maximizes rp The reason for this constraint on p is to prevent
or minimize any reentry into a significantly sensible atmosphere during
the transfer maneuver. The logic shown in flow chart 4 can be described

as follows.
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It is initially assumed that the goal is to maximize Tps S0 a posi-

tive AtT is applied whenever 8rp/8tT is positive. The magnitude of AtT

is held fixed until the derivative, 8 rp/atT, changes sign, and then it is
cut in half. This procedure is continued until rp exceeds the constraint
K13. Once this occurs the search variable is switched over to AV. The
problem is then re-initialized and a new constant magnitude of AtT is

introduced. In this case the object is to minimize AV, so a negative AtT

T
is cut in half whenever the derivative aAV/atT changes sign. If rp falls

is applied whenever 9AV/dt., is positive. Again, the magnitude of A t
T

below K1 3 while this process is attempting to minimize AV, then tT is set

back to the last acceptable value and the process is stopped.

In summary then, the "optimum intercept targeting routine'" per-
forms the function of seeking out an intercept trajectory which will be an
optimum with respect to propellant consumption. The sequence of com-
putations among the free flight prediction, the p-iteration, and the search

logic is as follows.

a) The search logic provides a value for tT*

b) The free flight prediction computes corresponding cut-
off point

c) The p-iteration computes intercept trajectory with
corresponding AV and rp

d) The search logic adjusts tp by £ At

The above sequence is repeated for a given number of cycles after
which the corresponding cutoff requirements are provided to the steering

equations.

5.3.2 Specified Conic Routine (see flow chart 5)

The '"specified conic routine' provides cutoff requirements to the
steering equations for the cases where the desired trajectories have been
specified before the Centaur guidance system has been activated (i. e.
where the desired trajectories have been pre-targeted). These pre-
targeted trajectories are escape hyperbolas for interplanetary missions

and ellipses for earth orbits and the pre-targeted translunar trajectories,

*An initial value of tT must be inserted to start the procedure.
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Therefore common generalized conic equations can be used to obtain the
cutoff requirements for these type trajectories.

It is assumed that the specification of the desired orbit includes the
size and shape of the conic, the orientation of the orbit plane and as well
the direction of the perigee vector, Thus the following quantities are

assumed to be available.

a = semi-major axis
P = semi-latus rectum
e = eccentricity
TR = a unit vector in the direction of perigee
p
j = the unit vector normal to the orbit plane

These quantities are obtained from a set of mission constraints, which
implicitly define the characteristics of the conic to be achieved. Any set
of constraints from which the above quantities can be obtained can be
used, However, for the purposes of this study it was assumed that the
desired conics would be defined in terms of the constraints described
below. These choices were made on the basis of what is usually available
for the particular mission and/or what was most effective in providing
maximum control over the characteristics of the final conic, Appendices

B and C show how the following constraints provide a, p, e and -i-R for
the "specified conic'' guidance modes. P

For the Interplanetary Escape Hyperbola the given mission con-

straints are:

1) Injection or vis-viva energy = C3

2) The perigee altitude = Rp

3) The direction of the outward assymptote (unit vector)

=5
For the translunar Ellipse the given mission constraints are:

1) Radius vector to the point of intersection of translunar
trajectory with lunar sphere of influence = -RT

2) Velocityat R, = V

T T
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The above two quantities might be obtained by using a
patched conic technique as described in Reference 5.

3) The perigee altitude = Rp

For the Elliptic Earth Orbit the elliptic parameters a, e, p, can be
obtained in a straightforward and familiar manner from the mission
requirements. However it should be pointed out that, even if, as in many
applications, there is no specific requirement on the line of apsides, the

guidance equations require that the perigee vector, _iRP’ be specified,

The two basic equations used for the ''specified conic' computations

are
- P
D = T+ cost (L1e6)
and
N
Vo ga+% (117

Equation (116) provides the value of the cutoff radius r needed by the
steering equations and Equation (117) forms the basis for computing the
cutoff velocity., The sequence of computations may be taken to begin with
the value of ) computed at the previous guidance computation. From

this value of Thys the cutoff vector ;D can be computed from

;D = rp cos A¢T<+rD sin A¢T+yD3-. (118)
In (118) the predicted powered flight burn arc A¢ is determined as
described above in the "powered flight prediction'' section. Also since it
is desired to cut off with no out of plane position deviation, YD is zero.
Using ;D’ the predicted cos f, ( = cosine of true anomaly at cutoff) can

be computed from

cos f = —— (119)
D

From this, the new predicted value of rpy can be computed from (116).
The new value of predicted cutoff velocity at rp is now computed from

Equation (117). This, however, is the magnitude of the velocity at ;D but



what is required by the steering equations is the component of VD along

Tps OT ;D' If we define

I' = flight path angle at ;D
then
r’D = Vpsin T (120)

The equation for the flight path angle can be easily obtained for both the

ellipse and hyperbola as follows. At any point on the conic

rXv = h (121)
Therefore
. II
rv sin <—2—-I‘> = rvcosI = h (122)
or
cos T = (123)
rv
and

h = pa(l -eZ)l/Z

From this
sinT = £ V1 - cos?l (124)

where the plus or minus sign is chosen on the basis of a test which deter-
mines a positive or negative true anomaly (see flow chart), With Equa-

tions (123) and (124) the cutoff velocity vector is specified as follows

Tp

D

vp = vp (cos T)TI} + (sinT) (125)
Here 1—]:') is a unit vector in the desired flight plane and normal to D and

directed in such a way that
Tp Xl = rpj (126)

if} bears a right handed screw relation to the direction of flight. With '\'rD

defined, the velocity to be gained vector, v_, is given by,

-7 (127)

v =

g D
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5.4 COAST ORBIT DETERMINATION GUIDANCE (See flow chart 9)

This method monitors the vehicle state during the coast orbit, mak-
ing continuous guidance computations. When these computations indicate
that the conditions for beginning the next burn have been achieved, a
restart signal is given and the guidance computations shift to the appro-

priate powered flight mode,

This method then involves a continuous computation during the coast
period. A study of the equation mechanization flow chart set will show
that the cutoff requirement computation and steering computations con-
tinue throughout unpowered flight as well as during powered flight. Thus
a cutoff point estimate is available whether the vehicle is thrusting or not.
What this means, as far as unpowered flight is concerned, is that an
estimate of the cutoff point for the up coming burn is always available, so
that the coast trajectory termination routine takes into consideration the

burn arc in making the decision of when to restart,

Now, referring to the coast trajectory termination flow chart, if the
vehicle is in powered flight mode, { will be unity, and the entire coast
trajectory termination routine will be by-passed. If a coast trajectory is
in progress then a test is made to see if the velocity increment needed to
complete the mission from the present vehicle state is sufficiently less
than the velocity increment remaining in the propellant tanks. If the
answer is no, then no restart signal is given. If the answer is yes, fur-
ther tests are made depending on the objective of the next burn. These

tests are as follows:

5.4.1 Injection into Intercept Orbit (bb = o0; aa = o)

Here the only additional test is to insure that the perigee altitude,
rp, of the computed intercept orbit is large enough so as to insure against
a re-penetration of the sensible earth atmosphere., If rp is sufficiently
large the restart signal is given, and if not the coast period is continued,
Notice that this criterion does not explicitly minimize the AV required for
the maneuver. Since the intercept and rendezvous (or com-sat injection)
burns are the last demands made on the Centaur propellant supply, mini-

mization is not really required at this late phase of the mission.



5. 4.2 Injection into Hyperbolic Escape Trajectory (bb = o0, aa = 1),

The criterion for restarting the engine here is that of injecting the
vehicle into the hyperbolic escape orbit as close as possible to perigee,
Thus if £, is the cosine of the angle between the perigee vector ?T and
the direction of the outward assymptote, s, the engine should be

restarted when

T —5 = fT (128)
where f . is given by (see Appendix D)
_ - tan”l \/P ]
fp = cos [n tan \/? (129)

or, from the relation between cosine and tangent

£ - . —1

(130)
1+ B

It is necessary however to make additional tests in order to avoid quad-
rant ambiguities. A check on the derivative of CT establishes whether
CT is in the first or second quadrant, or whether it is in the third or
fourth quadrant. Thus if

<0 3rd or 4th quadrant
(CT -C

)
TO >0 1lstor 2nd quadrant

where CTO is the previously computed value of CT. Two more tests
establish whether CT is within a range of values around fT or, in other
words, these tests tell whether the vehicle will be within a certain accep-
table range of true anomaly at cutoff, Thus if injection will be allowed to
occur between *6' and - 0" degrees true anomaly, the two tests on CT can
be seen to make the proper restart decision if the following definitions

are made,

110
sin 0! = K00 (131)
cos 0" = KllO
sin 0" = KZIO




2)

5.4.3 Injection into a Pre-Targeted Translunar Ellipse (bb = o, aa

As can be seen from the flow chart the procedure here is virtually
the same as that for initiating the burn for injection into the hyperbolic
escape trajectory., The only difference is the equation for computing the

true anomaly cosine, fT’ of the target vector T The method of obtain-~

T.
ing fT is given in Appendix C with the result
= |1 (P .
fo = [e <§ 1)] (132)
It should be pointed out here that the computations using Equations (129)
and (131) need not necessarily be done on board, since fT is a function

only of the quantities assumed to be pre-targeted.

5.4.4 Injection of ComSat into Synchronous Earth Orbit (bb = 1)

Here, the procedure is to initiate the burn when the predicted burn
arc is equal to the angle between the instantaneous position vector of the

vehicle T, and the position vector of the desired injection point r... The

T
actual computation compares the cosines of these angles, Thus if CT is
the cosine of the angle between r and ;T’ then
TeT
Cp = — (133)
T

Since a continued estimate of the burn arc, A¢ is being made
T and cos A¢,

can be made. When CT approaches cos A¢, the restart command is

upstream in the guidance computation, a comparison of C

issued. To avoid quadrant ambiguities, a check on the sign is also made

on CT.
5.5 CUTOFF ROUTINE (See flow chart 8)

After investigating several possible procedures a quadratic cutoff

formula was employed and found highly satisfactory.

The other procedures attempted were (a) a linear extrapolation of
the velocity to be gained parameter to obtain cutoff time and (b) a proce-
dure which attempted to predict whether the velocity to be gained parame-
ter would cease to decrease during the next computation time increment

(see Reference 3 for a complete discussion of this procedure). The first
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of these discarded schemes was found to be accurate enough for circular
orbit injections since it turned out that the velocity to be gained parame-
ter changed very linearly as cutoff was approached. However, it was
found that for injection into hyperbolic orbits, the change in the velocity

to be gained parameter approaching cutoff was non-linear enough to pro-
duce significantly large errors in the linearly extrapolated time of cutoff.
This large timing error was compounded by the fact that for hyperbolic
injections the vehicle acceleration levels are considerably higher than for
the near circular orbit injections (160 ft/sc—:c2 versus 60 ft/secz) so that any
timing error in cutoff can become quite serious. The second discarded cut-
off scheme did not prove adequate due to the fact that it used only the thrust
accelerationtopredict whether the cutoff would occur withinthe next compu-
tationtime interval. This was acceptable for circular orbit injections since the
velocity to be gained is nearly horizontal near injection and the gravita-
tional acceleration has virtually no effect on the nulling of vg. However,
for hyperbolic orbit injections the flight path angle at injection is signifi-
cantly different from zero (e. g. 5°) and the contribution of the gravitation

acceleration is significant in how vg changes.
The derivation of the quadratic cutoff equation is as follows:

Let v be the value of the velocity to be gained at t

V 1, V » Lt
gl "gl* “g2 0 1
'c2 respectively, Then using a Legrange interpolating polynomial to fit a

curve to these three values of Vg we get that

) - (v - ngl) (vg - ng) - (vg - ng) (vg - ng) .
g (vgo - Vgl) (vgo - ng) o (vgl - vgo) (vg1 - vgz) 1
+ (Vg ) V&O) (Vg - vgl) t (134)

- - 2
(VgZ vgo) (vgz vng

Since we desire that vg be zero at cutoff, we have for the formula




Vol Va2
t (at cutoff) = > . & t
- - +
Vg0 " Vg0 Vg1 T Vga) T Vg1 Ve

v Vv
+ g0 g2 t (135)
v 2 v v ~+v  )+tv v 1
gl gl “'g0 “g2 g0 "g2

s vgO vgl .
v 4oy v otv . )tv v
g2 g2 ''gb gl gl g

2

Equation (135)is that shown in the cutoff routine flow chart in. It is in a

form however, which promotes computational efficiency.

5.6 MANEUVER SEQUENCING AND CONSTANT REDEFINITION (See
flow chart 10)

In order to have the various maneuvers of a given mission executed
in the proper sequence automatically, a routine which provides this
sequencing must be provided. What this really means is that the guid-
ance program must provide logic which directs the computations to the
proper area of the generalized equation set. In addition, since the same
equations are often used for different maneuvers, itis necessary to
redefine various coefficients and constants associated with a particular
equation or equations. Flow chart 10 (together with other logic through-
out the program) performs this function. Thus, by entering the proper
set of constants into the ADC prior to launch, any of the missions
described above can be performed, either in the direct ascent or parking

orbit mode.

Appendix E gives a breakdown of the inputs necessary to perform

any of the missions in either of the two modes.
5.7 NAVIGATION EQUATIONS

5.7.1 The Advanced Centaur Navigation Problem

The function of the navigation equations is to generate the quantities
that describe the state of the vehicle and which are used by the guidance
equations in determining the appropriate guidance commands. These
quantities are in general the position, velocity and acceleration of the

vehicle expressed in an appropriate coordinate system or systems.
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The space system at which this study is directed is one with the
navigation capability completely self-contained and with the principle
sensing devices being inertial instruments. Thus, since such instru-

ments can sense only accelerations due to the vehicle propulsion system

and aerodynamic forces, the accelerationcomponents due to gravity must

be obtained by analytic means. That is, a mathematical expression which

is a function of vehicle position and has the accuracy necessary for the
proposed applications must be used to determine the acceleration imparted
to the vehicle by the earth's gravity. With the total acceleration determined,
appropriate numerical integration procedures are used to generate the

vehicle's velocity and then its position.

The principal problem likely to be encountered from the standpoint
of navigation in utilizing the Centaur vehicle for the various missions and
modes as described above, is that of the serious degeneration of the
accuracy of the results of the numerical integration when such calcula-
tions are carried out for extended lengths of time such as in parking
orbits and transfer orbits. This degeneration is due to the build up of
truncation and roundoff errors and as well to the use of an imperfect
mathematical model for the gravitational acceleration. By roundoff
errors is meant those errors which result from limiting the number of
correct digits which are to be handled by the computing device (in this
case a digital computer using binary digits). By truncation errors is
meant those errors due principally to the necessarily approximate nature
of the numerical integration procedure, though truncation errors are
generally taken to describe all those errors associated with the comput-

ing system not due to roundoff or gross mistakes.

The roundoff errors are not much affected by the design of the navi-
gation equations since these errors are determined principally by the
word length (or number of bits) allotted to the numbers appearing in the
navigation computations. On the other hand the truncation errors can be
reduced by a judicious choice of the numerical integration scheme and the
overall inherent accuracy improved further by choosing as accurate a

gravity model as is practical.

From the ground rules stated previously (see Section 2. 4) it is evi-

dent that for many of the missions and/or mission modes the Centaur
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guidance and navigation system will be active for lengths of time signifi-
cantly greater than those required for the current Centaur missions.
Thus the navigation computations for the Advanced Centaur configuration
as envisioned in this report, would have to be carried out with accuracies
greater than those possible in the current configuration, and the immedi-
ate software avenues available for making such improvements are as sug-
gested above in the reduction of truncation and gravity model errors. A
third possible way of reducing errors is to abandon the numerical inte-
gration during the longer non-powered portions of the flight and instead
utilize the "free flight prediction'" routine described earlier. Thus as
described in Section 5.3.1.3, given the position and velocity at some
point on the coast orbit (say, Centaur main engine cutoff), the position
and velocity at some later time on the same coast orbit is completely
determined. Such a computation would satisfy completely the navigation
requirements except for the fact that the 'free flight prediction' makes
the '"two body'' assumption which of course is not absolutely valid, and as

a result this procedure also incurs errors.

Below are given detailed derivations and descriptions of the inte-
gration scheme and gravity models suggested, Flow Chart 12 shows the
basic navigation combinations with the logic set up to use the "probe flight
predictor" for navigation during coast periods. If it is not desired to use
the "free flight predictor" for navigation purposes, then the J test in Flow
Chart 12 should be eliminated and the ¢ = 0 branch deleted. Time and task
budgets did not allow for a performance analysis of these suggested navi-
gation procedures. What is provided in this report are procedures which are
are fundamentally more accurate than those procedures currently used,
and which are reasonable worst cases from the standpoint of the burden
navigation computations would place on Advanced Centaur computer

requirements.

5.7.2 Overall Navigation Computations

The navigation computations can be divided into two general areas

as follows:

a) Navigation Initialization and Derivation of the parame-
ters required for the atmospheric equations.

b) Derivation of the basic navigation parameters.
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5.7.2.1 Navigation Initialization and Atmospheric Steering Parameters

Prior to the time of ''go ~inertial" (te = 0) all input vectors which
have been specified have been specified in the equatorial oriented inertial
system. (See Section 5.13.) At '"go inertial'' the orientation of the plat-
form coordinate axes are determined and the appropriate transformation
from the equatorial oriented to the platform coordinates may be com-
puted. This is assumed to be done on a ground computer. Using this
transformation the above input vectors are transformed to the platform
system (also done in a ground computer) and loaded in this form into the

flight computer.

At "go inertial' it is also necessary to define the pitch plane ori-
ented inertial system., Since this system is related to the platform sys-

tem by an orthogonal rotation about the w-axes, the transformation is

311 212 0
T = -3y, A 0 (136)
0 0 1
where
a;, = cos Au (137)
a;, = 1 -afl (138)

The angle Au is the difference between the alignment azimuth and the
pitch plane azimuth at launch where the launch time dependence of this

quantity can be determined prior to launch. Thus

a (139)

1 = 2 (g
where te is the launch time, referenced conveniently.

Now, it will be recalled (Section 5. 1. 2) that the atmospheric equa-
tion parameters are expressed in a coordinate system which is parallel
to the pitch plane oriented inertial system but which is moving with
respect to it with the velocity of the launch site at launch time. This
coordinate system has been referred to as the earth fixed system in Sec-
tion 5.1.2. The necessary position and velocity information in this

coordinate system is obtained by transforming first from the platform
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system to the pitch plane inertial system and thence to the earth fixed
system by subtracting the initial velocity of the launch site. The trans-
formation from platform to pitch plane inertial is carried out by using the

T matrix described above or, in terms of components

1 = A
r, a;pr,t a;, T, (not used)
r o= o
Ty 127w T Ty
L
T T (not used) q (140)
1 -
Vu = a11 v+ al2 v,
1 -
vv = a.12 Vu + a,11 v
v'!'=w
w w J

Since the atmospheric steering scheme selected required only cross
range position information (see Section 5. 8) the first and third equations

above may be eliminated as indicated.

The transformation from the pitch plane oriented quantities to the
earth fixed quantities is accomplished by subtracting the velocity and
position of the launch site at launch, expressed in the pitch plane oriented
system, from the position and velocity expressed in the pitch plane ori-

ented inertial system, or

V! = v' - ! )
uo

V! = y! - y!

y v Vo

¢ (141)

V! = v!

z w
P! = pt! < pt - v!

y v Vo Vo € J

Here V'uo’ v",o, r‘lzo are the required position and velocity components at
launch of the launch site expressed in the pitch plane oriented inertial
system. These quantities are obtained from the corresponding position
and velocity components of the launch site at launch expressed in the

platform system, by using again the elements of the T matrix, or
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uo a’11 vuo + a'lz Vvo

vo - %12 Vuo + 211 Vvo { (142)

vo -alz ruo + a'11 rvo J

The quantitiesv_ , v. , r
xo’ "yo’' “uo

components of the launch site at launch expressed in the platform system.

y T, are the required velocity and position

The computations described above are summarized in flow chart 13.
It might be mentioned here that a look at flow chart 13 will show that the
quantities used to compute v! , v! and r! do not possess the zero sub-
uo’ “vo vo
script as do the equations (142) above. This is because the actual naviga-
tion computation need not make this distinction since the initial navigation
computation (K = 0) proceeds in a different way from the subsequent

computations.

5.7.2.2 Basic Navigation Parameters

By basic navigation parameters is meant here the position and
velocity information needed by the guidance equations and the coordinate
system in which these parameters are expressed. Since the guidance
equations make no restriction on what coordinate system can be used
(other than it be inertial) one that is convenient with respect to the appli-
cation of the guidance equations can be chosen. For the purposes of this
report such a coordinate system is the accelerometer input or platform

coordinate system. This choice was made for the following reasons:

1) The use of platform coordinates reduces the complex-
ity necessary to derive the atmospheric steering
parameters. This is true because the atmospheric
parameters are related to the platform coordinates
parameters by only a single rotation and a subtraction,
whereas the relationship with some other operationally
definable inertial coordinate system would involve, in
general, a three rotation transformation to the plat-
form system and then the additional rotation and sub-
traction to the earth fixed system.

2) The transformation from the atmospheric attitude
commands to attitude error signals is likewise less
complex owing to the fact that only the negative of the
single rotation mentioned above (the translation is not
necessary since direction cosines are being dealt with
here) need be made while a system other than the

5-40




platform coordinates would require multiple rotations
again,

3) The transformation elements from computational
coordinates to the vehicle fixed system may be
obtained directly using the gimbal pickoff angles, or by
means of a resolver chain relating platform gimbal angles
to body coordinates. The use of some other computational
coordinate system would involve an additional transforma-
tion from the platform system to it.

It is, however, convenient to express the gravitational function in
an earth centered equatorial plane oriented coordinate system. This con-
venience comes from the fact that expressing the gravitational function in
this coordinate system permits taking advantage of certain symmetry
characteristics and this results in a less complex function (see below).
This coordinate system is that described in Section 5.1.1.3. Thus the
actual navigation computation which consists of a numerical integration
routine and the gravitational computation is conveniently carried out in

this earth centered equatorial plane oriented coordinate system.

Since the inputs to the navigation computation are velocity incre-
ments in platform coordinates and the output of the navigation computa-
tion must likewise be in platform coordinates, two transformations are
required on either end of the navigation computation, one from platform
to earth centered equatorial oriented and one which is its inverse. The
elements of these transformations are considered here to have been made
on the ground computer as soon as the launch time has been established

and loaded into the flight computer before actual liftoff.

The overall navigation computation flow chartis given in Figure 5
and summarizes the discussion of the above sections. The lines shown
dotted indicate the computations which are performed at or before ''go
inertial'., This figure does not show the literal computation flow but only
the flow in principal. The literal computation flow can be understood by

studying the corresponding equations flow charts.

5.7.3 Derivation of Navigation Equations

This section gives the mathematical justifications for the two
major segments of the navigation equations. These segments are the

gravity computation and the numerical integration procedure.

5-41



uorjendwo) uonedtaeN [[eIoaQ G 2indtg

SNOILYND3I ONIY33LS
DI4IH4SOWLY Ol

t

WILSAS d3XId HLdv3 NI
d3SS3YdX3 SAILILNVNO
Ol NOIS¥3ANOD

«IVILIANT OO 340438 40
¢ — — 1V 4Q31NdWOD X14LVYW
(-1 ANV.L 40 SIN3W3T3

CIVILYANTE OO, 3314V IWY04d¥3ad

CTVILEANT OO, 330438 30 LV dIWE04d3d —— — —

1Nd1NO
431IWO0OY¥I1IDDV

v

SNOILVYNDO3 IDNVAIND

SILVYNIQIOOD

WIO41V1d Ol TVIL43NI ANILNOY NOILVIOILINI ANV

JI4IHISOWLY-OX3 Ol < Q31NINO VROLYNOI ¢ NOILVINdWOD ALIAVYO

WO U4 NOILVWIOISNVIL

—| TVIIOLVNDI Ol WIO4LV1d

SILVNIAQIOOD J3LN3IHO
WOUd NOILYWIO4SNVIL

W3LSAS TVILIANI QILNINO
WILSAS TVILYINI IVI¥OLYNDI NI A35SIIdX3

QILNII¥O IVIHOLYNDI NI
d3553¥dX3 SYOLDIA LNdNI u WHYINI 09, Ly

NOI1LISOd ANV ALIDOTIA

4 NOILYWYO3SNVAL
<21 aNv UL 40 sINaWIT3 40
OILYINdWOD d3sV8 ANNQYO

5-42




5.7.3.1 Gravity Equation

An expression for the earth's gravitational potential is (See Refer-

ence 2)
oo a k
Vi, 9) =511 - z Jk<—r5> P, (cos ¢) (143)
k=2
where
J k = the kth coefficient in the summation
J, = Oforkodd

V (r, ¢) = the potential at coordinates r, ¢
r = radial distance from the center of the earth
¢ = angle measured from the earth's polar axis

ag = radius of the earth at the equator
_ th .
Pk (cos ¢) = thek order Legendre polynomial
This expression is reduced to the above from a relatively untractable

form, by making the following justifiable assumptions

° The earth's mass is distributed symmetrically about
its polar axis :

. The origin of coordinates coincides with the earth's
center of gravity

° The earth is symmetrically shaped with respect to the
equatorial plane

The Legendre polynomials are obtained from the expression
1
Pk (cos ¢) = X 2K -1)cos ¢ Pk-l (cos ¢) - (k-l). Pk_2 (cos ¢)
(144)
with
p, (cos ¢) = 1
Now, from analytical mechanics, the gravitational acceleration is

obtained by taking the gradient of the potential, or,

5-43




G = VYV (r, ¢) (145)

which can be shown to be (see Reference 2)

00 k

—~ V= 2 n <

G =T, - S (_ré) |PLy; tcos @)1, - Py (cos o) lz]' (146)
k=2

where Tk and—iZ are unit vectors in the radial and polar directions
respectively and the derivatives of the Legendre polynomials are

obtained from the formula

P! (cos ) = k—l—l [(2k - 1) cos ¢ PL_, (cos ¢) - kP|_, (cos )] (147)

with

Now, if an orthogonal coordinate system is defined with z' being along
the polar axis and x' and y' axes being fixed in inertial space and lying
in the equatorial plane, we have as described in Section 5.1.1.3, an
equatorial plane oriented inertial coordinate system. The components of
T in this x', y', z' coordinate system are T s ry, r, respectively. Thus

in this coordinate system,
(148)

cos ¢ = -fj (149)

where _1}'(, —l—;r
tively., Now if (148) and (149) are substituted into (146) and if the terms

’ l'z, are unit vectors in the x', y', z' directions respec-

beyond k=4 are omitted, the components of the gravitational acceleration

in the x', y', z' system are
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2 4
r J 15 r r 3r J T T
G, = -5 TXJ’"z;aZ 5 - 3x>'?434<315 z9x
r g r r & r
2
_210rz rx>:l
7
r
2 ; 4
T J 15 r T 3r J
o, n[2-ae (2505 ) s (i
¥ r g r r r
(150)
2
_ZIOrz rx)jl
7
r
3 2 5
T J 15r 3r br J r
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Equations (150) represents a maximum complexity for the gravity
functions. Itis probable that performance analysis on these functions
would show that the above equations would do an acceptable job with fewer
terms than shown. However, time and budget did not permit the
completion of such investigations. Equations (150) were used never
the less, in making the computer requirements estimate and constitute a

worst case contribution to these requirements. (See Section 4. )

5.7.3.2 Numerical Integration Procedure

The numerical integration scheme presented here attempts to pro-
vide improved accuracy by employing second degree numerical integra-
tion procedures rather than the currently used linear methods. This
requires the temporary storage of two previously computed values of the
parameter to be integrated, rather than just the storage of the result of

the last computed value of the parameter,

The procedure for integrating the gravitational acceleration to
obtain the contribution to the total velocity increment from the earth's

gravity is as follows.
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An estimate of the derivative of the gravity function at the time of
the present computation is made by fitting a second degree curve to the
last three values of the computed gravity and then establishing the deriv~
ative of the curve at the time of the current computation. Mathemati-
cally, however, the first step need not be explicitly taken, as the deriva-
tive may be obtained usingthe method of undetermined coefficients as follows.

Let the derivative att = T be approximated by the following formula

dG
—

= A (G)) + A (G ) + A (G) (151)
dt 0 X2 1 X1 2 xy

where AO’ Al’ AZ are coefficients to be determined and subscripts k,

k-1, k-2 refer to the current, last and next to last values of computed
gravity respectively., We impose the constraint that Equation (151) be

exact for functions of 2nd degree or less. Thatis, we say that when

G, =1
X
G, = (t-t ) (152)
e 2
Gx = (t tk-Z)
dG

formula (151) will yield the correct result for dtx' Differentiating
equations (152) we get

G! =0

X

GL =1 (153)
Gy = -1,

and if we assume a constant computation time increment, At

tee2 = Y2
te = e, tAL (154)
t = b, t24t
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Substituting Equations (153) and (154) into (1 51) then gives the three
Equations,

0=A+A+A2

0 1
1 = At A1 + 24t A‘2 (155)
4 = At A T 4At A,
from which
8 = 34
A =2 (156)
Ay = ziAt

The formula for the derivative is then

dG") - ~|lte) -216) +2) (157)
a /.~ At]2 x5 ey 2 x

With the value of the derivative obtained, the increment of velocity

added between t and bt is obtained using the trapezoidal relation

dG
(a0 = () 4t +3 [( dt x) K At} -
= (Gx)k at +% i_t |:% (GX) k_;-72 <Gx) k-1
+ % (Gx)k} hee

-1 {% <G")k-z'2 (Gx)k-l +1 (Gx>k }At

The same formula is used for AGY and AGZ.

» (AG ) , (AGZ) become the (AGX)
+1 Ykl k-1

’ (AGZ) » on the next computation of total integrated velocity.
k k

The total integrated velocity is computed by adding to the last value of

These values of (AG )
*k

k
(AG)
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total integrated velocity the contribution from the integrated gravity
computation (Equation 158) and the incremental thrust velocity acceler-
ometer output (Ast, etc. ). These computations are shown in the upper

left portion of flow chart 12,

In order to determine the vehicle position components a numerical
integration of the total integrated velocity is carried out. This proce-
dure utilizes the last three computations of integrated velocity to pro-

vide a second degree approximation, and is derived as follows.

Fundamentally we wish to find the increment of position contributed
to the total position between the time increments tk-l and tk’ from the
three values of total integrated velocity at tk’ tk-l and tk-Z’ (Vx)k,

(Vx) , (VX) , and etc, for the other two components. To do this we

k-1 k-2
set the integral equal to the following polynomial

te

V_dt = (V.) + (V.) + (v.) (159)
j;k-l X Ak-z xk__2 Ak-l xk_1 Ak X'

and impose the condition that Equation (1 59) be exact for functions of Vx

of second degree or less. Thatis, Equation (159) is to be exact for

A\ =1
X

v, = [t-t ] (160)
_ _ 2

v, = [t tk-Z]

If again the computation time increments are uniform,

teez T %e-2

tk-l = tk-Z + At (161)

tk = tk_2 + 2At
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Thus integrating Equations (160) from t, . to t, and substituting the

results into Equation (159), we get three equations, as follows:

At = Ay T A
Sat = A +2a (162)

7 =
AL = AL t4A

which yields for the constants
Ag.p = 4t
A =% (163)
AL = DA

Thus the integration formula becomes

e

- |5 2 _ 1
f Vedt = [1ztk T3 T 12 tk-z] At (164)
be-1

and etc. for the other two components. The position of this computation

in flow chart 12 is in the upper right hand corner.
5.8 ATMOSPHERIC STEERING

The discussion in this section is based on the work performed
under contract NAS3-3231 amendment 7 for the NASA Lewis Research
Center. This work was a study to determine the feasibility of employing
closed loop booster steering for the Atlas/Centaur vehicle. The results
of the study are reported in full in Reference 1. A major portion of this
study was devoted to the investigation of various booster steering laws
for use in the closed loop mechanization. The investigation was aimed
at determining, from a wide range of possible steering functions, which
best satisfied the following atmospheric steering requirements for the
Atlas/Centaur vehicle.

a) Acceptable stability characteristics throughout booster
flight.
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b) Acceptable dispersion control (position and velocity).

c) Improved load relief characteristics over the current
A/C time programmed booster steering.

d) Acceptable response to other common disturbances
such as thrust misalignment, C.G. offsets, and
changes in aerodynamic parameters.

e) Acceptable response to the effect of finite navigation
information sampling intervals.

An initial conclusion of the study was that of all the candidate pitch
plane steering laws investigated (some 39 in all involving position, veloc-
ity andaccelerationterms) four were acceptable for continued study "

These four were:

/ / / AV
1) C, = C,,V _+C,oV + ng(v)f +Cy0(V2)

-v-/ VI
X Z

-*-C31

. / / Y, /\2
2) C,, =C,pV +C,qg vz+c29(v)f+c3o(vz)

A +C__ A
2 x Z

+C 33

YR
31 Vx Vz + C3
K2 . p (165)
3) Caz - c24 Px + CZS Pz * C26(Vz) C27 Vx

/ ';2 / /
*Cog Vo T C3o(V4 *C31 Vi Vs

- ) /
4) Caz = C24: Pt CZS Pt CZ?(Vx)+ CZB(VZ)
\e I
* c30(V FCy VeV, 7G5, A, 7C33 4,

The coefficients in these laws (and the discarded ones) were obtained by
making least square fits of the particular law to 2 nominal A/C-5 tra-
jectory. The field was narrowed to the above four laws by

a) Discarding laws whose fits to the nominal trajectory
were such as to result in unacceptably large residuals.

b) Discarding laws which were not inherently stable.
This was ascertained by checking the various partial

sk .
Yaw plane laws were not investigated since the problems encountered in
pitch plane steering were considered to be much more severe.
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derivatives (with respect to the appropriate independ-
ent variables - position, velocity and acceleration) and
discarding laws for which the partials were cof the
wrong sign at a critical point in the flight or for sig-
nificantly long durations, A wrong sign here means a
sign which would result in pitching the vehicle in the
wrong direction to correct a given deviation from the
nominal trajectory.
The results of the analysis performed on these remaining four laws
is summarized from Reference 1 below. For a complete description of

this analysis Reference 1 should be consulted.

Once the inherent stability of the four laws had been established,
each law was analyzed further to determine what its effect would be on the
overall stability of the control system with the guidance loop closed.,

This was done by a standard technique of linearizing the system equations
at three critical points of the flight. Then the effect of the given booster
steering law in the closed guidance loop was determined by noting the
appropriate stability margins on a gain-phase portrait, The three criti-

cal points were:
1) Pitchover start
2) Max-Q (maximum aerodynamic loading)
3) Booster engine cutoff

Of these the Max-Q point is the most important since in the current
Atlas/Centaur configuration the aerodynamic gain margin is only barely
acceptable at this point. The results showed that the degradation of the
aerodynamic gain margin and the rigid body phase margin due to any of
the four steering laws was not severe, However, since the aerodynamic
gain margin at max-Q is dangerously small to begin with, even a small
degradation is serious. For this reason a redesign of the Atlas/Centaur
autopilot was dictated, When the four laws were analyzed with the rede-
signed autopilot it was found that laws 1 and 3 produced acceptable mar-
gins but that laws 2 and 4 produced instability due to the presence of
acceleration terms in these functions, This would leave laws 1 and 3 in

the running if the redesigned autopilot were to be employed.

When the four laws were evaluated in terms of their ability to keep

position and velocity perturbations small all gave satisfactory results
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with law 4 giving the best position dispersion results and law 2 giving the
best velocity dispersion results, However it was found from simulation
runs that the load relief characteristics* were best with laws 1 and 2,
giving 12. 5% improvement over the performance with the present time

programmer.

All of the four laws gave satisfactory results when disturbances
such as thrust misalignments, C,G. offsets, and changes in aerodynamic

parameters were simulated.

When the sampling periods for obtaining navigation information was
varied using each of the four laws it was found that for the laws incorpo-
rating acceleration terms (2 and 4) the sampling period had to remain
less than 0. 25 seconds to prevent instability, For the laws incorporating
only position and velocity terms (1 and 3) the sampling times had to
remain less than 1. 25 seconds though for law 1 instability did not occur
until the sampling time was above 2 seconds, For law 3 a significant
increase in the maximum bending moment at station 770 was experienced

for values of 1,25 and above and instability occurred at 2 seconds.

From these results, the balance favors law 1, because of its good
load relief characteristics and its ability to interface properly with an
advanced autopilot for the Atlas/Centaur. Though the other laws offer
somewhat better dispersion control, law 1 still keeps these dispersions
within limits which are entirely acceptable, Thus on the basis of the
work outlined above, the velocity law (law 1) is incorporated in this set of
generalized equations to perform the booster steering function with the

actual mechanization shown on flow chart 11.

It might be pointed out here that the work reported on in Reference
1 and outlined here was specifically directed at the Atlas/Centaur vehicle
with its own unique structural and control interfaces with guidance
schemes. For example, if the aerodynamic gain margin were not so
small to begin with a redesigned autopilot would not be necessary, and the

acceleration terms, in law 2 and 4 would not induce the instability

% e . :

Load relief is taken to be indicated by the reduction in the maximum
bending moment at station 770 of the Atlas/Centaur over that using the
current time programmed steering,
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mentioned above. Then, laws 2 and 4 might be recommended in order to
take advantage of their ability to reduce dispersion more effectively than
the velocity law. The other equations (that is the exo-atmospheric equa-
tion) in the generalized set, are not so organically connected to the Atlas/
Centaur vehicle which points up the fact that, in general, atmospheric
equations are highly vehicle dependent where the explicit equations are
not. In view of this any design of ''generalized equations'' where the gen-
eralization is intended to encompass different vehicle configurations,
would be hardpressed to provide a '"generalized' scheme for ascent
through the atmosphere applicable in an efficient manner to the various
booster vehicles, and a design approach which admitted the atmospheric
equations as a module would be called for, This modular approach was
taken in the design of the equation set presented in this report, with the
specific atmospheric steering equations being here, for the obvious

reasons, Atlas/Centaur motivated.,
5.9 COMPENSATION EQUATIONS

Flow chart 14 shows the general form of the equations assumed to
account for the inertial instrument compensation computations, These

equations can be considered representative of the equations used to com-

pensate for

accelerometer biases
gyro drifts
scale errors

nulling errors

However, since the actual compensation equations are determined in the
first instance by the inertial hardware itself, these equations do not con-
stitute a recommendation but rather are included in this general way so
that the overall characteristics and implication of a complete guidance

equation set may be more accurately determined,




6. PERFORMANCE OF THE UPPER STAGE STEERING EQUATIONS

This section of the report has been purposely separated from any
overall performance summary to emphasize the fact that the steering
equations which have been developed are independent of the methods used
to compute required cutoff conditions. The explicit methods of computing
required cutoff conditions recommended in this report are not essential
to the steering equations, and could be replaced by the more conventional

finite series representations if desired.

A goal of the development effort on this contract was to show that
the upper stage steering equations could give the required efficiency and
accuracy over a wide variety of missions and still remain entirely ex-
plicit, i.e., not require any trajectory dependent pre-targeted steering
coefficients. This goal was achieved, as is shown in the following
paragraphs. However, there was little time left for an exhaustive study
of the effect of various perturbations on a particular mission. Such a
study should be made if the development effort is continued. It should be
pointed out, however, that this scheme is not as sensitive to perturbations
as are some. In the case of injection into a fixed elliptical or hyperbolic
trajectory the steering is designed to remove any deviations in the initial
conditions at the start of the Centaur stage. Hence, the only effects of
winds, booster stage perturbations, or sustainer perturbations, are to
change the amount of fuel consumed in Centaur. In the case of intercept
guidance the desired velocity is computed explicitly, and hence there is
no increase in the error due to variations in cutoff position as there would
be with a finite series representation. There may, of course, be some
steering errors due to center of gravity offsets, etc., in Centaur, and

these should certainly be studied.

The following paragraphs describe the simulation results which
were obtained for some typical nominal missions, and some of the steps
which were taken in the development process. The simulations were
made with an AC-8 configuration, which was slightly modified to eliminate
certain items not essential to the present study. The values of the
guidance coefficients which stayed the same in all of these runs are

listed in Table 5.



It was first suspected that it might be necessary to stop the
guidance equations a few seconds before cutoff in order to avoid a situation
where a division by a near zero time to go (T) might be required. The
tests on T against the coefficient K14 was designed to prevent this situa-
tion. However, in the course of the study it was found that the test was
really unnecessary, and actually caused increased steering error unless
K14 was held at 1.0 sec. No excessively large attitude rates were
observed near cutoff with the value of K14. The value of K16 was held at
1.0 sec, which means that the cutoff routine is entered as soon as T
becomes less than 1.0 sec. Since the normal guidance computations are

halted once the cutoff routine is entered, the test employing K14 is not

really necessary.

This test was included in the flow charts to accurately describe the

existing simulation.

The value of K55 was held at 400 sec., which caused the vehicle to
be steered towards a circular orbit up until 400 seconds after liftoff. It
was found that this procedure gave a better trajectory shaping and
decreased the fuel consumption on the hyperbolic and intercept flights, as
is explained below in the sections on those particular simulations. The

value of K56 was chosen to give this circular orbit a 90 n.mi. altitude.

The value of K90 was chosen empirically to give good results under
a variety of conditions. This correction is necessary to acount for
gravity losses and rotation of the -{,g vector when computing time to go

until Cutoff, T.

The value of K91, i.e., =-32.3, was chosen from the difference
between the final acceleration of the Atlas Sustainer and the initial
acceleration of the Centaur. This choice is in agreement with the theory
of Section 5.2.3. |

The value of K95 was chosen as 30 sec, which means that over the
last 30 seconds the steering equations abandon the position constraints and
drive towards the velocity constraints only. It had been observed in the
simulation that if this switch were not used the equations would satisfy the

position constraints quite accurately, but have rather large errors in




Table 5. Values of Guidance Coefficients Which Remain
Constant for All Missions

K, = 36,000 Kg = 13,800
K, = 23,00 Ky = 4.0
K,, = 0.027159570 K, = 4.0
K, = 0.0375 K = 400
55
K., = 1.0
14 K., = 21,472,863
_ 56
Ky = 0.0
K. = 0.0930
K., = 1.0 90
16 '
K. = 4,014.2 Kg, = 32.3
17
K,g = 9,840 Ky = 30.0

velocity. This action is quite undesirable since the velocity errors are
usually much more serious than the position errors. The switch to

velocity steering at T = 30 seconds remedies this problem.

The coefficients K,, K K K and K describe the

60 1 B Kpar Ky Kig 19
accelerations and velocity change capabilities of the rocket engines. They
have been chosen in a straightforward manner from the known character-

istics of the Atlas and Centaur vehicles.

The coefficients K51 and K52 are used in the computation of the
commanded body angular rates. The first coefficient, K51, multiplies
the angular error in body coordinates, and the second multiplies the
integral of that error. This control law gives rise to a linear constant
coefficient 2nd order servo system on the body attitude. The fact that the
commands are computed only at the guidance cycle times, i.e., once
every half second, causes this control system to behave as a sampled

data system. The equivalent block diagram is shown in Figure 6.

The integral term was included in the control law in order to elimi-
nate the study state attitude error due to a constant commanded angular
rate. The problem of designing a realistic autopilot is not considered in

this part of the report. However, it was necessary to choose the gain
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K51 and K52 to give a good response in the simulation of the guidance
equations. The error in body attitude is related to the commanded

attitude by the expression

2

_ (Z-1) Z 166

N T k. At -+ ar i K At et O
51 ©°f )+ - 51 ©°f 52 T °f )

where Z is the usual transform variable used in sampled data analysis.

If ec(t) is a ramp function then

Ath
8.(2) = —— (167)
(2-1)
and so
Atf z
a0 (2) = — 2 (168)

Z- +Z (KSIAtf-Z) +(1 -K51 Atf+K52Atf )

Application of the final value theorem then shows that the steady
state error in body attitude is zero for a ramp input. For a cycle time
of Aty = 0.5 sec. a system with the minimum response time to a step or
=4.,0, K =4.0. With these values of

51 52
gain the expression for the Z-transform of Aep (t) is

ramp input is obtained with K

Aep(Z) = > eC(Z) (169)

The Z-transform of Aep (t) for a unit step input in ec(t) is then

1

Aep(Z) =1-2" (170)
whereas the corresponding expression for a unit ramp input is
AGP(Z) = At z™1 (171)




The corresponding time responses are shown in Figures 7 and 8.

These values of gain generally gave quite good results in the simu-
lations. For example, in the last thirty seconds before cutoff on the
parking orbit injection, the worst error was 13 sec in pitch and 10 sec

in yaw.
6.1 PARKING ORBIT AND ELLIPTIC ORBIT INJECTION

Much of the initial work concentrated on getting good performance
for a special case of elliptic orbit injection, i.e., for injection into a 90
n.mi. circular parking orbit. Since only the performance over the Atlas
sustainer and Centaur stages was of interest, the simulations were made
from a nominal set of initial conditions at the beginning of the sustainer
phase. The 3 vector describing the orientation of the desired orbital
plane was chosen so that it contained the position and velocity vectors at
booster burnout. The special values of the guidance coefficients needed

for the particular run are listed in Table 6.

Table 6. Special Guidance Coefficient for the Parking
Injection Simulation

1. v =20

2. K58 =1

3. ? = 0.14080116, 0.49383428, 0.85808085
4, K23 = 21,472, 863

5. K24 = 0.0

6. K25 = 21,472,863

The original set of equations presented in Reference 3 were found
to be inadequate because they caused excessive fuel consumption. The
cutoff weight for a simulation using these equations was 14, 106.5 lbs.
An open loop simulation using the calculus of variation to find the optimum
steering profile gave a cutoff weight of 14,169.5 lbs., a savings of 63.0
lbs. It was found that most of the difference was due to poor steering over
the Atlas sustainer stage, which caused poor jnitial conditions at the
beginning of Centaur. This fact was proven by making a guided simula-

tion over the Centaur stage with a set of initial conditions taken off the
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open loop simulation. The cutoff weight in this case was 14,163.0 1bs.,
which shows that the steering equations waste only 6.5 lbs., over the

Centaur stage when the proper initial conditions are provided.

The original equations were inefficient because no attempt had been
made to force the attitude to be continuous across the staging region.
Figure 9 shows a plot of Caz’ the direction cosine between the desired
thrusting direction and the local vertical, for the original set of equations
and for the optimum solution using the calculus of variations. Since Caz
is approximately equal to Cos ep, where ep is the desired pitch angle
from the local vertical, it is a measure of the desired attitude angle.

The optimum Caz is continuous and has a continuous derivative across
the staging region, whereas the original guidance equations gave a very
large change in Caz across the region. Once this problem had been
recognized the equations were modified with a AB correction which is
designed to give a smooth Caz across the staging region. The theory

behind this correction is discussed in Section V. B. 3.

Figure 10 shows the behavior of Caz after the AB correction had
been included. This profile has a much smaller Caz change than that of
the original equations, and generally follows the optimum Caz much more
closely. There is still a small discontinuity remaining because of the
approximations which were made in mechanizing the guidance equations.
The required change in attitude is only 4 d?g, however, which is quite
an improvement over the 16 d?g. of the original equation. The cutoff
weight was increased to 14, 150.5 lbs., which means that only 19.0 lbs.
of fuel were wasted. This final loss was judged to be acceptably small,
so development work on this problem was stopped. Further improvement
could probably be made at the price of increased guidance equation

complexity.

Figure 11 shows the behaviour of the B coefficient during the
powered flight region of the parking orbit injection simulation. The large
change between the values at sustainer cutoff and Centaur ignition was
purposely induced by means of the AB correction. This change in the B
coefficient causes the Caz direction cosine to be more smoothly behaved.

The straight line behavior of the B coefficient after Centaur ignition is
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due to the fact that ¥ was assumed to be a straight line in the derivation
of the guidance equations. The B coefficient is identical to ¥, as can be
seen from the derivation in Section 5.2.3, The B coefficient becomes
nearly constant over the last 30 seconds of flight because of the switch to

velocity steering during that time.

Some of the other characteristics of the parking orbit injection
simulations are represented by Figures 12 through 18. Figure 12 shows
a plot of altitude vs. time. The altitude rises above the desired value
during the Centaur phase, then drops down to its final value. This

behavior is fairly typical of most parking orbit injection schemes.

Figure 13 shows a plot of time to go until cutoff, T, for the same
simulation. It is clear from this curve that T is extremely linear and
quite accurate over both stages. The small irregularity which occurs
between stages is due to the fact that the acceleration goes to zero in the
region, and hence Vc and Vg become constant, causing T to become

constant.

The accuracy of the cutoff point prediction scheme is also of
interest. Figure 14 shows a plot of the predicted change in range angle
during powered flight A¢, on the parking orbit injection. The components
of the predicted cutoff position in inertial coordinates, as computed from
A ¢ and the present position vector, are plotted in Figures 15 through 17.
The components of the present position vector in inertial coordinates are
also shown in these figures. It is clear from these curves that the
prediction becomes increasingly accurate as the cutoff time approaches,
and that the error goes to zero at the end. Even at the beginning the
error is less than 30 miles, while the total position change being con-
sidered is on the order of 1, 500 miles. Hence the worst error is on the
order of 2% of the total position change, which is quite low considering

the number of approximations involved.

The accuracy of the steering equations was found to be quite good,
i.e., the vehicle was driven through the required final condition with very
little error. Figure 18 shows a plot of the magnitude and plot of the
inertial components of the \—’g vector over the last few seconds of flight.

The steering accuracy is demonstrated by the fact that all these
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components appear to be driven through zero simultaneously. On the
parking orbit injection the vehicle is thrusting nearly horizontally at
cutoff. Hence the errors in radial position and velocity and out of plane
position and velocity are measures of the steering error, whereas the
error in tangential velocity is determined by the cutoff routine. The
errors in radial position and velocity at cutoff were 15. 75 ft and 0. 020

ft sec"1 respectively. The errors in out of plane position and velocity
were 19.5 ft and 0.015 ft sec:'1 respectively. These errors are certainly
much lower than can be expected from any inertial guidance hardware
which can be built in the near future. The tangential velocity was in
error by 0.15 ft sec-l, which is largely due to the cutoff routine. The
resulting apogee error was 0.05 miles, and the perigee error was 0.03
miles. There was little effort devoted to determining just why the cutoff
routine gave this relatively large error. However, there is no reason
to believe that it cannot be improved to the point where the tangential

velocity error is as low as the steering error.

It can be stated, then, that the steering equations give satisfactory

efficiency and accuracy in the parking orbit injection mission.
6.2 HYPERBOLIC ORBIT INJECTION

Several simulations were made using the hyperbolic injection
option of the guidance equations on a direct ascent mission. The special
guidance coefficients used for making these runs are listed in Table 7.
The JTvector describes the desired orbital plane, the TRP vector describes
the desired orientation of the hyperbola in this plane, and K23 and K21
define its desired shape, representing semi-major axis and eccentricity,

respectively.

The initial simulations which were made showed that the guidance
equations were causing excessive fuel consumption. The final weight at
cutoff was 5501. 8 lbs., when these equations were used without modifi-
cation. A calculus of variations solution with the same initial and final
conditions had a final weight of 5686.2 lbs., a savings of 184.4 lbs. It
was found that the Caz direction cosine profile given by the guidance

equations was vastly different from that of the optimal solution, as shown
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Table 7. Special Guidance Coefficients for the Hyperbolic
Orbit Injection

1. v =0

2. Ky = +1

3. 7 = 0.14080116; 0.49383428; 0. 85808085

4 K, = 9.7708476 X 10" ft.

5. K, = 4.7607574 X 107 £t

6. K,, = 1.2195252

7. Tp = 0.4694073573; - 0.7965397313; 0. 3810265139
P

8. S = 0.1140066981; 0.8529953211; -0. 503146562

in Figure 19. It was also noted, however, that the optimal Caz direction
cosine profile was almost identical with that of the circular parking

orbit injection, as can be seen by comparing Figure 19 and 9. From
these results it was decided that the equations should be modified to steer
toward a circular parking orbit in the early part of the burn, i.e. for

time less than K55. As was mentioned earlier, K_,. has been chosen to

be 400 seconds. This resulted in a steering profilissomewhat closer to
the optimal solution, as shown in Figure 20. The cutoff weight was
increased to 5660.0 lbs., which is only 26.2 lbs., less than that obtained
using the calculus of variations. This loss was judged to be acceptably

small.

This method of steering causes the time to go computation to be
incorrect for time less than 40 seconds. Figure 21 shows a plot of time

to go, T, as a function of time,

The jump change in T at 400 seconds amounts to about 100 seconds.
The computations past that point are not quite as linear as on the circular

orbit injection, but are still satisfactory.

Some initial difficulties were encountered in computing the reciprocal
of the acceleration, i.e., Yy , on the hyperbolic orbit injection because the

velocity consumed, Vc’ becomes so very large toward the end. When VC
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becomes larger than the exhaust velocity of the gases, K19’ then the

v
accuracy of the expansion of exp KC tends to become poor. It was found

19

that a six term expansion of this function was needed in order to insure

the proper accuracy.

Figure 22 shows a plot of the altitude vs. time on the hyperbolic
orbit injection. This curve is, of course, identical with the parking orbit
injection curve up until 400 seconds. The altitude then drops down below
the 90 n. mile of the circular parking orbit before rising back up to the
final cutoff value. The altitude at cutoff was 716, 674 ft., and the radial
velocity was 3675. 38 ft sec—1

Figure 23 shows a plot of the components and the magnitude of v
in inertial coordinates. These curves again illustrate the accuracy of
the steering equation, since all components appear to be driven to zero
simultaneously. The vehicle is thrusting in a nearly horizontal direction
at cutoff, so the error in radial and out of plane position and velocity are
indicative of the steering error. The error in the tangential velocity is

caused by the cutoff routine.

The hyperbolic orbit injection differs somewhat from the parking
orbit injection in that the radial and tangential components of desired
velocity are varying continuously throughout the flight. Figures 24 and
25 show the variations in these quantities in the region near cutoff.

These variations are caused by errors in predicting the cutoff position.
The variations in Vg in Figure 23 are thus due to variations in Vd as well
as V. The fact that V_ essentially goes to zero means that Vg is very

nearly equal to V at cutoff, in spite of these variations in Vd.

If the curves in Figures 24 and 25 are extrapolated to the known
cutoff time it appears that the desired radial and tangential velocities
were 3675. 52 ft sec”! and 37, 840. 84 ft sec ! respectively. The actual
radial and tangential velocities at cutoff were 3675.38 ft sec-1 and
37, 840. 66 ft sec”! respectively. The 0.14 ft sec ! error in radial
velocity is essentially a steering error, and the 0.18 ft sec-1 error in
tangential velocity is due to the cutoff routine. There was, in addition,

a 0.030 ft sec-l error in out of plane velocity. The corresponding position
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errors were 2, 055 ft in the radial direction and 15 ft in the out of plane

direction. These figures were all taken from a simulation with K95 = 30.

The overall performance can be improved slightly by changing K95, as

shown below,

The objective of the hyperbolic injection is to obtain a prescribed
escape velocity with respect to the earth, voo’ which insures that the
vehicle will have some desired velocity with respect to the sun. The
error in attaining voo is then a measure of the software performance.
This error is a function of both the velocity and position errors at cutoff.
From the vis-viva integral one has

2

v = -
oo

pIE

(172)

so the magnitude of the final velocity depends only on the semi-major
axis of the orbit. This semi-major axis is in turn related to the radius,

T and velocity, N at cutoff by the equation

a = —7> (173)

and

da C

avc 9

When the numerical values of this particular simulation are sub-

stituted into the above expressions the results are
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da
ar. - 43
C
92 _ 48,500 sec
E)vc

It might appear at first that the velocity error at cutoff is much more
critical than the position error. However, the position error can make
important contributions too. For example, the run with K95 = 30 seconds,

the errors were
Arc = + 2,055 ft

Av_ = - 0.21ft sec”l,

so that Arc contributed + 88, 500 ft to Aa, whereas AvC contributed
-10,200 ft. The actual error observed in this case was Aa = + 72, 966 ft,
which is very close to the value predicted by the above linear theory. The

resulting error in the magnitude of ¥ was 4.1 ft sec”l,

This simple
treatment says nothing about the error in the direction of Voo‘ It does,
however, point out the fact that both position and velocity error at cutoff

are important to the final performances.

By varying K95, the value of time to go at which velocity steering
is commanded, it is possible to obtain a compromise between position
and velocity errors at cutoff. If K95 is made large then the velocity
steering is begun early and the velocity errors at cutoff are kept low,
while the position errors may be rather larger. On the other hand, if
K95 is decreased then the position errors are kept small, but the
velocity errors get worse. It is clear, then, that there is some optimum

value of K95 which will give a minimum to the magnitude of the error in

voo'

Figure 26 presents a plot of the magnitude of the error in ‘700 vs.
K95, which shows that the best value of K95 is about 15 sec. The error
in voo at the value of K95 is 3 ft sec-l. The total midcourse Av provided

for interplanetary missions is usually several hundred ft sec-l, so the

nominal error is almost negligible.
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The steering equation performance on a nominal hyperbolic orbit
injection is then quite satisfactory from the point of view of both fuel

consumption and accuracy.
6.3 INTERCEPT ORBIT INJECTION

The steering equations were checked in the intercept mode by
simulating the direct ascent intercept of an artificial earth satellite which
had a 148.5 n mi perigee and a 158.5 n mi apogee. It was assumed that
the launch site was very close to the orbital plane of the target, and that
the two orbital planes were coincident at booster burnout. The simula-
tions were again initialized at the beginning of the sustainer stage,
assuming a nominal trajectory up to that point. Table 8 gives the values
of the special guidance coefficients used in these simulations. The

meanings of the symbols used there are given in Section 9,

The free flight prediction equations, p-iteration equations and
search routine were used in these runs to compute the desired velocity
at cutoff. The search procedure was used to find the best rendezvous

time, t.., to minimize fuel consumption, subject to the constraint that

)
the per;rgee altitude be above 300, 000 ft. The launch window limits were
established by running a number of trajectories with different launch
times and noting the time limits on the region of acceptable performance.
It was found that excessively high attitude rates were required prior to
the opening of the window, and that the perigee altitude became too low
after the closing of the window. The window which was finally established
was over seven minutes wide. Simulations were obtained for five
different launch times within this window. The effects of earth's rotation
on the launch site location were ignored in this study, since the earth

rotates only 1.75 dgg during the launch window.

The general procedure of guiding towards a 90 n mi circular
orbit until t = 400 seconds was retained in these simulations, since it
seems to give better trajectory shaping and lower fuel consumption. For
example, on the trajectory which had a starting time at 6 minutes after
the opening of the launch window, the cutoff weight was increased by 421

lbs. by the use of this procedure.
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Table 8.

Special Guidance Coefficients for the Simulation of the
Intercept of a Low Altitude Earth Satellite

~ A R R R R R &= ® ®" R
w N N — — (¥, > w [\ —
o N o w o

|
o w
(=]

<

5.50 x 109 ft2 sec1

5
550 x 107 £t° sec”

300 sec.

3200 sec.

50 sec.

21,200, 000 ft.

0.0

300 sec

3.0

0. 050

10,294,364.2; + 17, 423, 723. 0; - 8,338, 014. 7 ft.
22,082.41; - 8, 849.13; + 8, 729. 5 ft sec™ .
3593, 1

1

0.14051799; 0.49381829; 0.85813647

Figure 27 shows a plot of the final Centaur weight for various

injection,

launch times.

The weight is increasing for later launch times, which

means less fuel is being used. At the end of the window the cutoff weight
is almost equal to the 14,150 lbs. observed on the circular parking orbit
At the opening of the window the cutoff weight is 13, 274 1bs,
The increase in final consumption at the opening of the window is due to
the fact that the trajectory has to be lofted somewhat to allow the target

vehicle to catch up with the Centaur. Towards the end of the window the
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Figure 27. Cutoff Weight for Various Launch Times
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phase lead of the Centaur is greatly reduced, so the trajectory is much
flatter.

The value of the D coefficient in the steering equations was held at
zero in all the simulations. It is possible that even better fuel economy
could be obtained if some other value of D were used. The optimum
value of D could easily be found by making a number of simulations with

different D coefficients.

The lofting required for early launch times is illustrated in Figures
28 and 29 which show the radial velocity and altitude at cutoff for various
launch times. It is clear from Figure 28 that the radial velocity at cutoff
is a large positive number at the opening of the window, then decreases,
goes through zero, and becomes negative at the end of the launch window.
At 347 sec, the lift off time for which the radial velocity at cutoff is zero,
an almost perfect Hohmann transfer condition prevails. If the launch
occurs prior to that time, then the vehicle passes through the apogee of
the transfer orbit and comes down on the target vehicle from above. If
the launch occurs later than 347 sec then the vehicle passes through
perigee on the transfer orbit, and comes up to the target vehicle from

below.

The rendezvous time, trs chosen by the search routine is plotted
in Figure 30. The longest tp occurs at the launch time corresponding to
the Hohmann transfer. All other rendezvous times are higher than this,

indicating a transfer of over 180°.

The perigee and apogee altitude on the transfer orbits for various
launch times are shown in Figures 31 and 32 respectively. Note that the
perigee altitude is always considerably lower than the cutoff altitude
except at the launch time corresponding to the Hohmann transfer condition.
At that time the two are essentially equal. The perigee altitude decreases
very rapidly past the 347 sec. lift off time, soon hitting the 300, 000 ft
lower limit at the edge of the launch window. The apogee altitude is
very high at the opening of the launch window, because the Centaur must
go high above the target vehicle to reduce the phase lead. Increasing
liftoff time then produces a linear decrease in apogee altitude until 340
sec point. The apogee altitude then becomes essentially constant at the

altitude of the target vehicle.

6-37




1000

i

$ \

ud

w

—_

L

W

O 500

[

)

O

-

<

>.

=

O

9

o O

S

-]

<

2
=500

0 100 200 300 400 500

TIME FROM OPENING OF LAUNCH WINDOW, SEC

Figure 28. Radial Velocity at Cutoff for Various Launch Times

150

=

-~ \
(§W)

(&)

>

=

5

<

= 50

O

|-—

-

(O]

0 100 200 300 400 500

TIME FROM OPENING OF LAUNCH WINDOW, SEC

Figure 29. Cutoff Altitude for Various Launch Times
6-38




RENDEZVOUS TIME, tyr SEC

5000
-\
\
4000
3000
2000 0 100 200 300 400 500

TIME FROM OPENING OF LAUNCH WINDOW, SEC

Figure 30. Rendezvous Time, tos for Various Launch Times

110

100

} /\
o A\
70 Fa=/ \
: A

40

0
o

PERIGEE ALTITUDE, N MI

30¢ 100 200 300 400 500
TIME FOR FROM OPENING OF LAUNCH WINDOW, SEC

Figure 31. Perigee Altitude on the Transfer Orbit
for Various Launch Times

6-39



APOGEE ALTITUDE, N MI

500

400

300

200

100

100 200 300 400
TIME FROM OPENING OF LAUNCH WINDOW, SEC

Figure 32. Apogee Altitude on the Transfer
Orbit for Various Launch Times

6-40

500




The steering accuracy was again quite good. The cutoff errors in
radial and out of plane velocity are summarized in Table 9. The worst
error in radial velocity is 0,05 ft sec —1, and the errors in out of plane
velocity are all less than 0.01 ft sec -1. These good results are due to
the fact that the guidance equations are in the velocity steering mode
for the entire time that the intercept equations are being used. The
equations are designed to stop the search procedure some time before
cutoff is reached, so that the rendezvous time, tT' and position, ?T’
becomes constant. The desired velocity then becomes nearly constant,
except for small variations due to errors in predicting the cutoff position.
These variations do not cause any significant problems, as shown by the

above accuracy figures.,

The target misses observed at the chosen rendezvous time are
not as small as might be expected from the figures on steering accuracy.
These misses are summarized in Table 10 for the various launch time.
The worst miss is 3908 ft, which occurs at the opening of the launch
window. Because the steering errors are so low, these misses must
largely be attributed to the cutoff routine. The observed misses are
still low compared to what can be expected from IMU errors, tracking
errors, and oblateness effects. The gravity forces due to the earth's
oblateness have been neglected in the computation of desired velocity,
and hence will be a source of target miss. It should also be pointed
out that the miss figures given here are for a fixed time. The miss at

the point of closest approach will be somewhat smaller in every case,

The characteristics of the trajectories flown for various launch
times are all quite different. Only the data on the first trajectory will
be given here to avoid unnecessary detail. The first trajectory was
chosen because the vehicle will always be launched at the opening of

the launch window unless mechanical difficulties have occurred.
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Table 9. Cutoff Errors in Radial and Out of Plane Velocity
for Various Launch Times

Launch Times (Ar) (Aay)
0 sec 0. 05 ft sec:-1 0.01 ft sec-1
120 0. 02 0.01
240 0.02 0.01
360 0.03 0.01
420 0.02 0.01

Table 10. Summary of Target Miss For Various Launch Times

Launch > > >
Time AX AY AZ \/(AX) + (AY)™ + (AZ)
0 sec | -1,697 ft. +3,110 ft. +1, 398 ft. 3, 809 ft. w!
120 - 0958 +2, 747 -1.426 3,240
240 + 408 +2,146 -1,303 2,544
360 1,241 +1, 595 -1,124 2,312
420 + 58 + 202 - 108 236

Figure 33 shows the inertial components of v_ in the vicinity of
cutoff, These components are all driven through zero simultaneously,

which again demonstrates the accuracy of the steering equations.

Figure 34 shows the inertial components of the predicted cutoff
position, fD’ as a function of time. The very first point has large errors
in it because ED is set equal to T, i.e., there is no prediction. The

curves are then fairly smooth until the staging region. Another discon-

tinuity occurs at the 400 sec point where the intercept guidance is
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initiated. The curves are remarkably smooth, however, considering the
fact that the vehicle is steering towards a parking orbit for the first 400

seconds.

Figure 35 shows the inertial components of desired velocity, Vd’
which is computed at the predicted cutoff position, T'D. The initial values
contain large errors because of the error in TD' The jumps at 400

seconds are due to the switch from circular orbit injection steering to
1

s

intercept guidance. This change amounts to less than 1, 000 ft sec”
however, which is relatively small. The small changes occurring past

this time are due to errors in the prediction rountine, which cause fD

to change.

Figure 36 shows the time to go (T) as a function of time. Note the

small jump in T at the 400 second point.

In summary, then it can be stated that the steering equations give
satisfactory performance with respect to fuel consumption and accuracy

when used in the intercept guidance mode.
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7. PERFORMANCE OF INTERCEPT EQUATIONS

7.1 GENERAL

The intercept equations are used in any situation where it is desired
to hit an earth satellite having a known ephemeris while using a minimum
of fuel. These equations are used for intercept of artificial earth satel-
lite, for lunar missions, and for Comsat missions. Comsat missions are
handled by requiring intercept of a fictitious earth satellite in the desired

Comsat orbit.

Whenever intercept is required, v will be set to unity in the initiali-
zation equations of the flow charts, which calls into play the free-flight
prediction equations, the p-iteration equations, and the search logic. The
operation of this combination was described earlier in Section 5.3.1. The
final output is the desired velocity, ;D’ needed at the predicted cutoff
point to hit the target at an optimum rendezvous time, tT. The purpose
of this section is to give some performance data on each of these blocks
of equations, and on the overall combination. The pi'oblem of introducing
biases to account for earth's oblateness gravity effects and for lunar

gravitational effects will also be discussed.
7.2 P-ITERATION EQUATIONS

In every case which was tested during the course of the study it was
found that the p-iteration scheme converged to within sufficient accuracy
after six iterations. Table 11 shows the results of each of these itera-
tions in a typical case where the vehicle is near cutoff on a translunar
injection. The actual difference between to and tD was 226,163.71 sec.,
so the final value shown in Table 11 is in error by only 0.20 seconds. The
corresponding error in the desired velocity, ;D’ was less than 0.03

ft. sec-l, out of a total of about 36, 000 ft.sec™!,.

In the case considered in Table 11 the initial value of hD was far
enough removed from the final value that five iterations were required for
convergence., The scheme will generally converge even faster when used
with the guidance equations because the initial value of hD is taken to be

the final value of hD computed on the previous pass through the p-iteration
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Table 11. Performance of the P-Iteration Equations

Iteration No. N2 hD
0 240, 714. 42 sec. 7.1900000x10% km?sec™?
1 238, 806. 13 7.1907189x10%
2 226, 854, 83 7.1954822x10%
3 226,198. 80 7.1957576x10%
4 226,163.91 7.1957722x10%
5 226, 163. 91 7.1957722x10%

equations. On the very first guidance cycle, however, it is always neces-
sary to use an initial guess. This initial guess is denoted by K3 in the

flow charts. A fixed value of K3 will generally serve quite well for a wide
variety of conditions. For example, it was found that a fixed value of K3
gave good results at a series of points taken across a lunar launch window

on a direct ascent mission.

Even better accuracy on free fall time, T 12° is obtained in other
applications. For example, in the case of a low altitude satellite inter-
cept run, the errorsinT 12 Were generally less than 0. 001 seconds out of
a total of about 3, 000 seconds. All of these figures are, of course,
independent of the errors arising from the use of two body equations to
describe the motion of the vehicle, which neglects the gravity forces due

to earth's oblateness and due to the mass of the moon.

The ratio of the initial value of AhD used in the iteration procedure,
denoted by K, in the flow charts, to K3 is quite mission dependent. For
the low altitude satellite intercept it was found that K; =0.01 K3 worked
quite well, but such a value was too large on a translunar injection. In
the latter application a value of K1 = 0.001 K3 was found to work satis-

factorily.
7.3 FREE-FLIGHT PREDICTION EQUATIONS

The rate of convergence of the iteration procedure used in solving
Keplers equation was found to be highly dependent on the eccentricity of
the orbit being predicted. Less than three iterations are required for

low eccentricity orbits. However, highly eccentric orbits can require up




to ten iterations for good results. Table 12 shows a typical iteration
sequence for prediction of an orbit with an eccentricity of 0.985. The

purpose of these iterations is to solve the transcendental equation
AE = -S(1 - CosAE) + C Sin AE + AM

for AE. The actual mechanization is carried out by rewriting the above
equation as f(AE) = 0, and then iterating until a value of AE is found

which will satisfy this equation.

Table 12 shows that in this case convergence is reached after
the 8th iteration, even though a somewhat better solution was available on
the 7th. The final solution for f(AE) is not actually zero because of round-
off error in the digital computer. In this case it appears that after the 5th
iteration the solution is essentially unchanged. However, in some other
cases it was found that the use of seven iterations still led to some resid-

ual error, and that ten iterations were actually needed.

The final choice of the number of iterations to be used here will
depend a great deal on the applications to be made of the free flight pre-
diction equations. If they are only used in predicting the position of a
target vehicle then a lower number of iterations might be acceptable,
since most targets will have reasonably low eccentricities. However,

there is the possibility that these equations might also be used as a

Table 12. Performance of the Free Flight Prediction Equations

Iteration No. f(AE)

-0.42208285
+4. 68407780
-0.27248116
+0. 15442495
+0.01146152
. 00008622
-0.00000003
+0. 00000000
-0.00000001
-0.00000001
-0.00000001

© 0 ® N oo bW N = O
-+
o
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navigational aid, in which case they would be required to handle quite
high eccentricities. For the present, it will be necessary to assume a

worst case situation, i.e., that ten iterations are required.

Comparison of these solutions with those of numerical integration
routines are somewhat useless, since they only show up the numerical

integration errors.
7.4 BIAS EQUATIONS

The use of two body equations in free flight prediction and in com-
puting VD will, of course, lead to errors if nothing is done to account for
the gravity forces due to the earth's oblateness and due to the mass of the
moon. These effects can generally be ignored in the case of rendezvous
with an artificial earth satellite, since they are small and can be detected
via radar in the latter phases of the mission. The additional fuel needed
to correct these errors is not a critical factor in such missions. How-
ever, in the lunar mission the effects of lunar gravity on the trajectory
are relatively large, and the amount of fuel available for midcourse cor-
rection is quite limited. Hence, translunar injections require a rather
accurate compensation of these effects. This section describes some of
the work which was done to establish an effective method for making this

compensation.

Figure 37 shows some of the variables involved in the biasing
problem. The location of the center of the moon at the time of impact,
tT, is denotéd by ﬁm’ The actual cutoff conditions needed to impact the
desired point on the lunar surface, as determined by a complete numeri-
cal integration solution, are denoted as ?D’ VD’ and t. If these condi-
tions are used in the two body prediction routine then the resulting posi-
tion at time tT’ denoted as ?T’ is displaced somewhat from the actual
impact point. The difference, ?T - _r'M, is the total bias vector, b. The
b vector gives the required compensation for the earth's oblateness grav-

ity force, and also describes the target location on the lunar surface.

The guidance equations employ the free flight prediction routine to
compute -r-M for eachvalue of t,. The bias vector, b, must then be added
to ?M in order to obtain the aiming point, r.,. If the prediction of ?M is

T
correct, and if the proper b vector is added to r, ,, then the value of VD

7-4
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Figure 37. Diagram of the Lunar Biasing Problem



computed by the p-iteration equations will, by necessity, be correct. The
errors in predicting the moon's position and in computing the bias vector

are then pertinent to the accuracy discussion.

The accuracy of predicting the moon's position was tested by com-
paring the results obtained from the free flight prediction routine with an
actual ephemeris over the range of impact times encountered for a single
launch window., The data which was used was that of the Centaur/
Surveyor mission. The particular launch window was that of September 30,
1965, The free flight prediction routine was initialized by using the actual
position and velocity of the moon at the impact time which was closest to
the middle of the impact time range. Table 13 shows the resulting errors
in inertial coordinate for six impact times which just about span the
range of impact times for this launch window. The worst error is less
than 0.5 km, which is quite satisfactory. The allowable uncorrected soft-
ware miss at the surface of the moon is 2 deg for the present guidance
system, which is equivalent to about 60 km. Judging from these results
it might even be possible to initialize the free flight prediction equation
only once during a launch opportunity of several days, rather than ini-
tializing at each launch window. Further work needs to be done to estab-

lish the time span over which this approach will work,

The b vector was also computed for several impact times during
this same launch window to determine its behavior and to find the simplest
way of representing it. Figure 38 shows the three coordinates of the b
vector as a function of the impact time, tT’ as measured in inertial

coordinates. Figure 39 shows a similar plot of b as measured in a

Table 13. Error in Predicting the Position of the Moon

Case Impact Time AX AY AZ
1 224,147.358 sec | -0.13 Km | -0.08 Km | -0.04 Km
2 224, 597. 884 -0.14 -0.08 -0.02
3 224, 964. 706 +0.26 -0.05 -0-
4 226, 164.306 -0- -0- -0-
5 227, 544, 510 -0.45 -0.15 -0.03
6 229,709, 744 -0.43 -0.38 -0.13
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cylindrical coordinate frame which rotates with the moon. There was
some speculation that the b vector might be more nearly constant in the
rotating coordinate frame than in the inertial frame. However, Figure 38
and 39 show that there is no advantage to using the rotating frame. The
inertial representation is much easier to handle in the Airborne Digital

Computer (ADC), and hence was chosen as the preferred mechanization.

The curves connecting the data points in Figure 38 were computed

from the equations

by = Ky + Kgoltp - tg)
by = Ky3 + Ky (tp - tp)

) 2
by = Keg + Kpo(tp - tg) + Kegltp - t)

which will be used in the A, D.C. to compute the bias vector for a par-
ticular impact time. The coefficients in these equations will, of course,
be dependent on the particular launch window in question and will have to

be recomputed accordingly. The particular values used for Figure 38

were
Kél = 1,843.11 km
Kep = -0.0166 km sec” !
K63 = 6,788.0 km
K64 = -0.130 km sec-1
K65 = 2477 km
K., = -0.1342 km sec™"
K, = -0.222%10™% km sec™

The quantity to appearing in the bias equations was chosen to be the same
as the time of initialization of the moon's position and velocity, which in
this case was near the middle of the range of tT values, i.e., at

tT = 226,164.306 seconds.

The nominal cutoff conditions employed in this study were obtained
from closed loop runs using the existing Centaur guidance equations,

which led to some impact error at the moon. The lunar latitudes and
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longitudes of the impact points obtained from these cutoff conditions are
shown in Table 14. It can be seen from this table that there is a 3 deg
variation in latitude between the six cases, and a 0.5 deg variation in
longitude. If open loop nominals had been used, there would be a much
smaller variation in impact position and less difficulty in defining the
target location. As the situation stands, the target can be any point which
has a 2 deg radius sphere about it that contains all the impact points. The
target will thus be chosen to lie at 2.5 deg latitude and 154.5 deg longitude.
These variations in the nominal impact points probably account for at

least part of the error in fitting to the data of Figure 38.

The accuracy of the bias equations was proven by computing the
desired velocity for the same six cases using the free flight prediction
equations, the biasing equations, and the p-iteration equations. The
exact impact time of the nominal trajectories were used for tT values, so
the search logic was not needed. It was assumed that the vehicle was at
the nominal cutoff position and velocity when the computations were made.
A complete numerical integration solution to the equations of motionwas
then used to predict the lunar impact point which would result from the
use of this desired velocity. The resulting lunar latitude and longitude

are given in Table 14.

The data in Table 15 follows that of Table 14 fairly closely over the
first five data points. The worst deviation for this set of data is about
0.2 deg. The last point differs by about 2.0 deg in longitude. This

deviation is undoubtedly correlated with the poor fit obtained on case 6 in

Table 14. Lunar Impact Points Obtained From The
Nominal Cutoff Condition

Case Latitude Longitude
1 1.0813 deg 353.7157 deg
2 1.3284 deg 353, 7455 deg
3 1.6235 deg 354, 0027 deg
4 1. 6253 deg 353, 6730 deg
5 2.0838 deg 354.1659 deg
6 4.0950 deg 354. 0064 deg




Table 15. Lunar Impact Points Obtained From The
Computed Desired Velocities

Case Latitude Longitude
1 1.1163 deg 353, 8444 deg
2 1.3211 deg 353, 7784 deg
3 1.4144 deg 353, 7228 deg
4 1.6528 deg 353. 7046 deg
5 2.1145 deg 354, 0339 deg
6 3.3870 deg 356, 0063 deg

Figure 38. The fact remains, however, that all the impact points fall
within 2. 0 deg of the target, which is acceptable performance. The
deviations from the original data are so small that it appears that if a
consistent set of data had been used initially the final performance would

have been quite good.
7.5 SEARCH LOGIC

The search logic essentially seeks out the t which minimizes the
fuel consumption of the total rendezvous maneuver for any given set of
initial conditions. The problem is constrained by requiring that the

perigee altitude be kept above a certain minimum level.

In the original guidance equations of Reference 3 the search logic
was initialized every guidance cycle and allowed to complete fifteen
iterations. However, it was found that this number required too long a
computing time, and did not give good convergence. The values of to
were still changing enough near cutoff to cause changes in desired velocity,
which led to some steering error. Hence, the logic was changed so that
the equations were initialized only once during a given burn, and only
three iterations were made per guidance cycle. This procedure reduced
the computing time, and also caused the search logic to converge to its
final answer well before cutoff occurred. In fact, in the intercept runs
discussed earlier the search logic usually converged to its final answer
within 10 seconds after the start of intercept guidance.. The fuel con-
sumption with this type of operation was no worse than with the original

equations,



In order to determine whether the search logic could be used suc-
cessfully on a translunar injection, a separate A-shot program was set
up which contained only the free flight prediction equations, biasing equa-
tions, p-iteration equations and the search logic. No vehicle dynamics
were included in this program, so it was necessary to enter position and
velocity as additional inputs. The cutoff values of position and velocity
at the same six points used in the lunar biasing study were employed
here. The search logic was then used to find the optimum value of tp and
the corresponding desired velocity, VD' The program was allowed to go
through 30 iterations. The object was to determine whether the program
could find its own value of tT for various launch times, and whether this »
value would be close to that of the nominal trajectory. It was also ques-
tionable whether the biasing equations would work properly for slightly
non-nominal values of tp. The coefficient values used in these runs are

shown in Table 16.

The resulting values of tn are shown in Table 17, along with the
values from the nominal trajectories. It is clear from this table that the

worst deviation in tT is only 63.5 seconds, which is small compared to

Table 16. Coefficient Values for A-Shot Runs on Translunar Injection

K, = 7.19 Km? sec”!

F2 70 2 -1

K3 = 71900 Km~ sec

K4 = 3600 sec

K5 = 226,164,306 sec

K10 = 500 sec

K13 = 6475.6 Km

K22 = 3600

K30 = 30.0

K31 = 0.050

?o = 108,723.76; -346,204.17; -174,909.96 Km
-\70 = 0.93719289; 0.24830374; 0.03332489 Km Se(:_1
to = 226,164.306

v o =1




Table 17. Values of t _ From Nominal Trajectories
And From A-Shot Results

Nominal A-Shot
Case tr to
1 224.147.36 sec 224,147.12 sec
2 224.597. 88 sec 224, 590.09 sec
3 224, 964.71 sec 224, 901.22 sec
4 225,164.31 sec 226,166. 85 sec
5 227, 544. 51 sec 227,536.18 sec
6 229,709, 84 sec 229,729.93 sec

the total variation in tT of over 5, 500 seconds. This deviation does not
represent a direct error either, because the position of the moon will

still be computed properly for that time, and the p-iteration equations will
give a proper value of VD for the computed t.,. This deviation may, how-

T
ever, cause some indirect error through the bias equations.

Table 18 shows a comparison between the nominal cutoff velocities
and the VD vector computed by the A-shot program. The worst deviation
is 0.0014 km sec-l, which is about 4. 6 ft sec-l. It must be remembered
that this is not all error, since the routine chooses a slightly different

impact time, which requires a different velocity.

The lunar impact points obtained from the A-shot ;D values are
shown in Table 19. These points are very close to those of Table 13.
Assuming again that the target lies at 2. 5 deg latitude and 354. 5 deg
longitude, the impact points all fall within a 2 deg circle centered at the
target. Therefore, the procedure meets the accuracy requirements '

imposed on the present software.

Figure 40 shows the iteration pattern obtained for case 4 when using
the A-shot program. Only the first 15 of the 30 iterations are shown here,
because the data density becomes too high after that. The minimum point
on this curve is quite clearly defined, and it can be seen that the data
points are rapidly approaching this minimum. The actual operation in the
guidance computer would be somewhat different, however, because only 3

iterations would be made per guidance cycle. Also, the Av curve would

7-13
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Table 19. Lunar Impact Points Obtained from the Vd Vectors
Generated by the A-Shot Program

Case Latitude Longitude
1 1.1076 deg 353, 8209 deg
2 1.2847 deg  353.7029 deg
3 1.4493 deg 353. 8086 deg
4 1. 6491 deg | 353,7059 deg
5 2.1376 deg 354, 0450 deg
6 3.2943 deg 355. 9832 deg

be different on each guidance cycle because the required Av is decreasing
as the cutoff time is approached. The curve of Figure 40 is still rather

helpful in visualizing the operation of the search logic.

It appears, then, that the search logic will give satisfactory
performance on the translunar injection, as well as on the low altitude

satellite intercept mission,



2.0

L 813 0 11 1,4,7,10
©) - 3
7 ]
s
A4
>
a NOMINAL

1.0 IMPACT TIME

0.5 .

222.5 225.0 227.5 230.0
TIME, t, SEC X 10

Figure 40. AV versus tr' Lunar Injection, 30 September 1965, Case 4




8. STABILITY INTERFACE OF GENERALIZED EXPLICIT
EQUATIONS WITH THE CURRENT ATLAS/CENTAUR
CONTROL SYSTEM

A separate study was conducted at TRW Systems by J.P. Ivaska of
the Performance Analysis Section of the Control Systems Depar.tment.
The purpose of this study was to determine what, if any, interface prob-
lems existed when explicit guidance techniques were used with the current
Centaur Control System. The report on this quite extensive study is
included in this report as Appendix A. The plan of the study was to
investigate the interface problem in two parts: The first, to determiné
whether explicit equations in the guidance loop fundamentally degrade
the Centaur Control System performance seriously. The second to
evaluate the effect of the explicit equations on the Centaur Control System

with consideration given to the actual digital nature of the guidance loop.

In the first part the guidance equations used were a linearized
version of those presented in this report, and the control system model
was a linearized version of the Centaur Control System. The objectives
of the first part of the study were pursued using a linearized analysis,
with the conclusion that the incorporation of explicit guidance results in
very little degradation of system stability prior to the approach of
injection. However, as the time to injection becomes short the importaht
stability margins are considerably reduced, though no instability results.
The reason for this behavior can be appreciated by noting that the attitude
commands as generated by guidance vary inversely with the time-to-go
until engine cutoff. Thus attitude commands changes tend to be more
extreme near cutoff than further away resulting in greater demands being
put on the control system. Interms of the linearized analysis performed
in Appendix A, the reduced values of time-to-go are shown to result in a
higher gain constant in the linearized guidance loop, thus producing the
degraded stability characteristics.

The second part of the study was performed by utilizing a sample
data simulation. This simulation was capable of representing both the

continuous nature of the control system dynamics as well as the digital



nature of the guidance loop. The sampling periods were varied from 1

through 20 seconds for the case just prior to injection. The situation just
prior to injection was chosen as a result of its relative criticality as indi-
cated by the results of the first part of the study. The simulation showed
that sampling times of up to 5 seconds were satisfactory but that instabil-

ity occurred when longer sampling periods were used,

The results of this guidance-control interface study thus showed that
the use of the type of explicit equations presented in this report does not
cause serious problems of control as long as the guidance loop sampling

periods are kept to about 5 seconds or less.
These timing limitations have the following implications:

1) An advanced flight computer (such as the LEM AGS)
will have no speed problems performing the computa-
tions for the complete generalized equation package.
Table 5 gives a maximum timing requirement of less
than 0.1 second which is of course well below the 5
seconds required from the above stability analysis.

2) The current Centaur computer would take more than
13 seconds (See Table 5) to perform the powered
flight computations for intercept problems which is
well beyond the stability limit of 5 seconds. Thus the
current Centaur computer could not accommodate the
complete generalized equation package.

3) From Table 5, it can be seen that if intercept guidance
is deleted from the equation package, the timing
requirements using the current Centaur computer are
2.8 seconds which is within the 5 second limit. Thus
if intercept guidance were not included in the overall
capability of the equation set, the current Centaur
computer would not be ruled out for reasons of insuf-
ficient speed.







9. CONCLUSIONS

The most important conclusions that can be drawn from this equa-

tion study and the related tasks performed within the Advanced Centaur

Study are as follows:

1)

2)

3)

The use of generalized equations to provide guidance
for a multipurpose space system employing the Centaur
vehicle together with the Atlas lower stages is feasible
provided advanced computer hardware is supplied.

The use of explicit guidance techniques, as described
and analysed in this report, provide high flexibility
and long term economy with more than adequate
performance accuracy for the generalized guidance
purposes.

The current Centaur -3 Librascope computer might be
able to handle a version of the generalized equations
which did not include an intercept guidance capability.
However, to do this the -3 would have to be modified
to permit use of the entire memory during flight, and
even then the squeeze would be tight.




10. FLOW CHARTS

The flow charts presented in this section are the mechanizations of
the equations derived and discussed in the body of the report. The com-
puter requirements estimates of Section 4.1 were made from these flow

charts,
The flow chart number and title are listed below.
Flow Chart

1) Initial Guidance Loop Computations
2) Free Flight Prediction
3) P-Iteration
4) Search Logic
5) Cutoff Velocity Prediction
6) Exo-Atmospheric Steering
7) Error-Signal Equations
8) Cutoff Routine
9) Coast Trajectory Termination
10) Maneuver Sequencing
11) Atmosphere Steering
12) Navigation Equations
13) Atmospheric Navigation Parameters

14) Compensation Equations
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11, NOMENCLATURE

semi major axis of conic (p-iteration)

elements in transformation from platform to
pitch plane oriented inertial system matrix

0 if coast trajectory is rendezvous or Com=Sat
parking orbit

1 if coast trajectory is interplanetary parking
orbit

2 if coast trajectory is translunar parking orbit

semi-major axis of conic (hyperbola or specified
ellipse)

semi-major axis of earth's reference ellipsoidal
semi-major axis of target's orbit

magnitude of thrust acceleration

acceleration level at which BECO occurs
sensed acceleration

steering coefficients

Auxiliary variables in cutoff routine

Components of acceleration in earth fixed system

lunar offset bias vector

coefficients in biased lunar position vector determination

0 if coast trajectory is parking orbit
1 if coast trajectory is intercept orbit

coefficient used in free flight predictor

variable used in p-iteration
Atmospheric steering coefficients

direction cosines of desired acceleration with
respect toi j k frame
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Direction cosines with respect to earth
fixed system

direction cosines of desired acceleration
with respect to vehicle fixed axes

(€51, t)

eccentricity of conic

true anomaly

desired true anomaly
cosine of true anomaly of T, or §

cosine of minimum angle between injection
and target vector (?T or S)

cosine of maximum angle between injection
and target vector (':i'T or S)

Component of gravitational acceleration

angular momentum

desired angular momentum

counter in coast trajectory termination
routine (monitor mode)

unit vectors along computational coordinate
axes

unit vector in perigee direction of first
specified conic

unit vector in perigee direction of second
specified conic

integral of O and eYE respectively

unit vector normal to desired orbit plane
of first conic

unit vector normal to desired orbit plane
of second conic
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T2

4

variable used in p-iteration counter

Coefficients in spherical harmonic repre=
sentation of earth's potential

variable used in search procedure counter
counter

initial increment on hD for p-iteration
number of iterations to be used in p-iteration

initial guess on hD to be used in p-iteration
initial value of tr to be used in search logic

velocity change capability of both stages

velocity change capability of second stage

initial increment on tT to be used in search
procedure

reciprocal of initial sustainer acceleration
reciprocal of initial Centaur acceleration

limit on Rp to be used to switch from search
on Rp to search on AV in search procedure

value of T for switching to constant coeffi-
cient steering

limit on r for atmospheric steering
equations

limit on T for entering cutoff routine
velocity. cha.nge.\\capability of sustainer
exhaust velocity of sustainer

exhaust velocity of Centaur

ratio of mass to mass flow rate at sustainer
fuel depletion
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100

110

115

200

210

67

Hi

semi major axis of first specified conic
semi major axis of second specified conic
eccentricity of first specified conic
eccentricity of second specified conic
semi latus rectum of first specified conic
semi latus rectum of second specified conic
number of iterations in search procedure
atmospheric steering constants

180 degree test in p-iteration

rate command proportionality constant
gain for integral control loop

time at which steering to inject into desired
orbit is initiated

lunar intercept offset constants
limit on At for entry to steering
maximum ratio of T’Q

e

cosine of maximum allowable true anomaly
at injection

cosine of minimum allowable true anomaly
at injection

velocity capability pad

sine of maximum allowable true anomaly
at injection

sine of minimum allowable true anomaly at
injection
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T ,r ,r
u''v''w

Null factor
Euler angle scale factor

compensation constants for non-g sensitive
gyro drift

compensation constants for attitude rate scale
factor errors

variable used in search procedure counter

compensation constants for accelerometer
bias

-

compensated scale factors for

accelerometers

variable used in free flight predictor counter

( 0 for interplanetary mission (two burn) or
pPre-targeted lunar mission (two burn)
1 for rendezvous mission and in flight

< targeted lunar mission (two burn)

2 for com-sat mission (three burn)
3 for redefined internally in guidance program
{ for three burn com-sat mission

semi-latus rectum of conic

variable used in search logic

component of position normal to pitch
plane

period of transfer ellipse
7]

Initial components of position in equatorial
oriented inertial system

radius of perigee on transfer orbit
|7

components of r
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= components of position at launch of launch
site in platform coordinates

r' ,r' ,r! = components of T!
u' vt w
r' ,r!' ,r! = components of r!
uo’” vo’" wo o
) = desired radial velocity at cutoff
T = present position vector in platform
coordinates
T = position vector in equatorial oriented
e h . .
inertial coordinate system
r = |7 ]
-;d = predicted cutoff position vector
-;o = position vector of target vehicle at t_
r = position vector of launch site at ''go inertial"
po in platform coordinates
?T = position vector of target vehicle at t,
?t = target vector for pre-targeted translunar
ellipse
T! = position vector in pitch plane oriented inertial
coordinate system
?'O = position vector of launch site at '"go inertial"
in pitch plane oriented inertial coordinate
system
(rpo )u' (rpo)v' (rpo )w = components of rpo
(rx), (r.), (rz) £ components of position in equatorial oriented
y inertial system
S = constant used in free flight predictor
S = sine of true anomaly of E’I‘ or s
s = unit vector in direction of outward assymptote
t = present time
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time of ignition of sustainer

time of first ignition of Centaur

time (from liftoff) at which liftoff roll maneuver ends
predicted time of cutoff

time since 'go inertial

time of launch

time of last ephemeris of target vehicle

time of rendezvous with target

time to go until cutoff

transformation from platform to pitch plane oriented
inertial coordinate system

transformation from platform to equatorial oriented
inertial coordinate system

time to go until sustainer burnout

0 if Centaur guidance is terminated
1 if Centaur engine will re~ignite

‘VT"V&l
velocity consumed

desired velocity vector

Initial components of velocity in equatorial oriented
system

velocity vector of target at tr
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V. sV 5V = components of v
P w po

Vo' Vvo! Vwo - components of velocity at launch of launch site in
platform coordinates

vx'vy’vz = components of vV along i j k respectively
1 1 ' = !
ViV v,v w components of v
1 1 ' = ol
VoV 'vo?V wo = components of v
v = present velocity vector in platform coordinates
Ve = velocity vector in equatorial oriented inertial
coordinate system
\—rg = velocity to be gained vector
Vm = location of center of moon at impact
Tro = velocity vector of target at t_
;po = velocity vector of launch site at '"go inertial'' in

platform coordinates

v! = velocity vector in pitch plane oriented inertial
coordinate system

v! = velocity vector of launch site at '"go inertial" in
pitch plane oriented inertial coordinate system

V'T = velocity vector of vehicle at tp on transfer orbit

(v o (v ) s (v )

components of v
po‘u’ ‘'po’v’ po'w

m

Vs = velocity remaining in sustainer stage

V'x, v .V'Z = components of velocity earth fixed coordinate
y system

(Vi 1o (V)i (V)= components of velocity in equatorial oriented inertial
y system

W = dummy variable used in search logic

Wo = previous value of W
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= components of r along i j k respectively

= desired velocity along 3 direction at cutoff

components of ;D along j and k axes respectively

= unit vector along desired thrusting direction

unit vector normal to [ andj

= unit vector in direction of '170

= unit vector normal to IR lying in plane of ;D
and T

unit vectors along x' y' z' axes respectively
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6., 0.0 .

Vo ®

)
PP’ p

At

At
c
At
At
Av

AV

AV

AV_,AV_ ,AV
X y z

AV _,AV ,AV
X y z

1"

magnitude of AtT in search procedure

1l itérate on AV in search procedure
0 iterate on rp in search procedure

reciprocal of thrust acceleration of sustai:. -
flight path angle

reciprocal of thrust acceleration of Centar.

Euler angle outputs

scaled Euler angle outputs

steering constant
change in eccentric anomaly

change in hD

change in mean anomaly
guidance computation cycle time

guidance cycle time

time increment used in cutoff routine
change in tT

velocity remaining in both stages

total velocity change needed to complete
Centaur mission from present state

velocity capability remaining in Centaur

uncompensated incremental velocity com-
ponents in platform coordinates

referenced accelerometer output in platfor:
coordinates

11-10




Av_., Av__., sz.

(8G,), (AG), (AG,)

(Avsu)’ (AVSV)' (Avsw)

Aa , Aa , Aa
b 4 y z

Aafon AOlYAa AazA

8yr» OPE: ORE

12

"

accumulated raw accelerometer output in
platform coordinates

velocity increment in platform coordinates

velocity increment in computational coordi-
nates .

components of integrated gravity increments

components of sensed velocity in platform
coordination

compensated commanded incremental rota-
tional components

commanded rotational increments
gyro referenced output
raw gyro output

angle between alignment azimuth and launch
azimuth at ''go inertial"

predicted change in central angle during
powered flight

1if T > K1 4
0if T =K 4 and on initial guidance compu-
tation

1 if prediction of burnout position is desired
0 if prediction of burnout position is not
desired

yaw, pitch, roll angle errors

1 hyperbola
-1 ellipse

predicted time of free ﬂight

0 sustainer engine
1 Centaur engine

universal gravitation constant times mass of
earth
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0 if hyperbolic or specified ellipse

1 if intercept guidance is desired
guidance is desired

0 if sterring is to null both position and

{1 if steering is to null velocity errors only
velocity errors

unit vectors along vehicle roll, yaw, pitch,
axes respectively

elements of guidance to vehicle coordinate
transformation matrix

{1 engine on
0 engine off
central angle between rH and T'm

roll, yaw, pitch rate commands

=0 0=sf<Tw
>0 t=<f<2w
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REFERENCES: 1. U4222-6034-K0000, "Guidsnce Equations for Advanced Centaur
Guidance System Study," R. P. Davis and C. M. Staley,
7 June 1965

2. GD/A-DDE65-00L (Ceneral Dynamics/Astronsutics document), "Flight
Dynamics and Control Analysis of the Centaur Vehicle (Atlas/
Centaur AC-5)," K. C. Bonine, January 1965

I. SUMMARY

This investigation analyzed the Atlas/Centaur guidance-control interface
problems associated with the incorporation of the'explicit guidance acheme
developed in Reference 1. This preliminary study was divided into two distinct
sections.

The first was conducted under the assumption that the guidance commands arc
updated continuously; it showed that explicit guidance loop would not degrade sys-
tem stability excessively. The second section evaluated the effects of the digi-
tal nature of the guidance loop; it determined that the stability degradation
remains tolerable with this more realistic representation of the guidance loop.
This analysis also showed that the range of guidance loop sampling periods which
yield acceptéble system stability characteristics is between zero and five seconds.

The conclusions of this preliminary study are: (1) from a control system vie:
point, the explicit guidance scheme can be incorporated into the Atlas/Centaur
vehicle; and (2) the guidance commands should be updated at least once every
five seconds. |
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II. INTRODUCTION

A. General

TRW Systems Group is conducting a study program in support of Atlas/Centaur
for the National Aeronautics and Space Administration, Lewis Research Center,
under Contract Number NAS 3-3231. The program consists of six major tasks, most
of which are concerned with guidance of Atlas sustainer or Centaur stages. This
report contains analysis supporting Tesk VI, one objective of which is the develop-
ment of a set of explicit guidance equations for use during exoatmospheric flight.
The analysis is devoted to an investigation of the guidance-control interface pro-
blems caused by the incorporation of this explicit guidance scheme into the Atlas/
Centaur vehicle.

B. Background

For the purposes of stability analysis, guidance equations may be classified
into two very general divisions. One class consists of open-loop guldance schemes;
the commands generated are functions only of time, not of any quantity describing

vehicle state.

A second class consists of closed-loop guidance schemes; the commands are
functions of vehicle state, though they may also depend on time. Within this
class are two further classifications. One is delta guidance equations; the com-
mands are functions of the differences between certain vehicle state variables
and the corresponding desired end conditions. The key equation of such a scheme
is usually a truncated power series. The second classification is comprised of
explicit guidance methods, which are dependent on present vehicle state and which

use equations in closed form.

The two basic classes, open- and closed-loop guidance schemes, differ markedly
in their impact on system stability characteristics. Because a closed-loop guid-
ance approach is dependent on certain vehicle state verisbles, some of which may
be measured and used by the control system, its incorporation may alter vehicle
stability characteristics. Experience has shown that system stability is generally
degraded by inclusion of closed-loop guidance. However, an open-loop guidance
scheme, which utilizes no vehicle state information, does not change vehicle sta-
bility characteristics. ‘
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For the same reason, the two classes also differ strikingly in their capability
in handling non-nominel situations. Open-loop guidance does not sense off-nominal
conditions and cannot correct for them. Closed-loop guidance is sensitive to
variations from nominal and, therefore, includes possibilities of compensating for
them.

Whenever a new closed-loop guldance approach is proposed, it must be evaluated
with respect to several considerations. It should possess certain capasbilities
which can be assessed without regard to guidance-control interface problems. Among
these is the capability to minimize off-nominal errors. However, it is equally
important that its effects on system stability characteristics be tolerable.

The present Atlas/Centaur uses closed-loop delta guidance equations. However,
a set of closed-loop explicit guidance equations has been developed under Task VI
for use on later Atlas/Centaur vehicles; the derivation is presented in Reference 1.
Its various attributes are presently being investigated, and important emong these
is the impact of its incorporation on system stability characteristics.

C. Objectives of Study

The basic objective of this study is to evaluate interface problems between
the explicit guidance scheme of Reference 1 and the vehicle control system. The
incorporation of this guidance method must not result in excessive degradation of
vehicle stability.

There is an additional aspect to the problem. The guidance equations are to
be implemented digitally; this raises the question of how often the guidance com-
mands should be updated. Generally, the more frequently the updating is performed,
the less stability characteristics are degraded. This implies that there exists
e minimum allowable sampling frequency which can be formulated just on the basis
of vehicle stability considerations. An evaluation of the interface between guid-

ance and control must include the development of such a requirement.
ITITI. GENERAL APPROACH

This section presents the approach used to evaluate the guidance-control
interface problems resulting from incorporation of explicit guidance into Atlas/
Centaur. Details of the actual analysis are deferred until later sections. Through
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the procedure outlined below, it was possidble Lo determine whether the explicit

guidance scheme can be used in Atlas/Centaur without intolerable alterations in
vehicle stability.

A, Choice of Trajectory

The Atlas/Centaur explicit guidance scheme is designed to accommodate a wide
class of possible trajectories. However, to meke the problem tractable, a typi-
cal trajectory had to be selected. This is not a serious limitation oh the value
of the analysis since the guidance-control interface problems were not expected
to be greatly trajectory dependent. The trajectory chosen for this study should
not be extreme and should be typical of missions projected for future Atlas/
Centaur missions.

B, Stability Analysis for Vehicle Without Closed-Loop Guidance

After the trajectory selection, the next step was to evaluate vehicle
stability characteristics in the absence of open-loop guidance. This provided a
basis for comparison through which subsequent results were evaluated. First, it
had to be decided whether the analysis was to be conducted in the pitch plane or
in the yaw plane or whether studies for both planes were necessary. After this
decision, the following tasks were performed.

1. Linearization of System Equations

In launch vehicle or missile design, stability investigations are generally

- started by linearizing the vehicle total equations. The resulting set of linear
differential equations characterize system behavior in the small. Coefficients of
the equations are fixed at values corresponding to critical flight times, and con-
ventional linear control system techniques are employed to derive vehicle stability
portraits. The basic assumption is that the rate of change of the coefficients

of the equations is low compared to the frequencies of interest, usually an easily
Justifiable assumption.

Since the primary purpose of this analysis was to examine the guidance-control
interface, related topics such as slosh limit cycle and actuetor nonlinearities
which may affect the basic system characteristics were ignored. These effects
should be examined later in more detailed studies.




65.9352.8-104
Page 5

2. Choice of Flight Times

In launch vehicle and missile control system design, particularly for atmospheric
flight, the choice of flight times for which to evaluate system stability is compara-
tively straightforward. Those generally selected are Liftoff, Max-Q (the time of
flight at which aerodynamic pressure is maximum), Burnout, and flight times when
gain changes occur.

For this problem, the choice of flight times 1s not as clear, for two reasons.
First, the explicit guldance scheme is not used until the exocatmospheric phase
of flight, which eliminates several of the above possibilities. Second, the times
selected should be those when the guidance scheme-control system interface problems
are comparatively severe, which is difficult to estimate a priori.

A reasonable solution is to spread all but one of the selected times of
flight fairly evenly throughout the period of use of the explicit guidance scheme

and choose the remaining flight time near the end of that period. Experience has
shown that incorporation of a closed-loop guidance scheme generally results in

greatest degradation of vehicle stability characteristics near the end of its employ-
ment, vhen the matching of boundary conditions is completed.

3. Linear Analysis

After linearization of system equations and choice of flight times, conventional
control system techniques were used to obtain the appropriate stability portraits.
Gain-phase plots vere used, and values of critical stability margins were read
from these, The details of the use of the gain-phase plot and the significance

of various stability margins are explained in Section 5.2,

C. Stability Analysis for Vehicle Incorporating Explicit Guidance

Tasks similar to those described above were also completed for a vehicle
including explicit guidance, so that the severity of guidance-control interface
problems could be assessed.

1. Linearization of Guidance Equations

The linearization of system equations for a vehicle without closed-loop guid-
ance is comparatively straightforward, because the dynamic and control system
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equations for different launch vehicles are similar in form. However, different
guidance schemes generally use far different sets of total equations, and the

1inearization of sets of guidance equations must be done individually.

After completion of guidance equation linearization, a complete set of small-
angle equations was available for a vehicle including explicit guidance. Stability
portraits were then obtained for such a vehicle for the flight conditions previous-
ly selected.

2. Comparison of Results

Comparisons of corresponding stability portraits determined the severity of
the guidance-control interface problems. The results can dictate whether the
explicit guidance approach can be incorporated into the Atlas/Centaur without in-
tolerable degradation of vehicle stability.

The representation of the guidance loop in these foregoing analyses was con-
tinuous. In actual fact, the guidance commends are computed digitally; this
means aggravation of any interface problems. The above comparison simply deter-
mines whether the explicit guidance can be included in the somevhat idealized case
for which the guidance commands are updated continuously.

3. Determination of Minimum Allowable Sampling Freguency

To complete the examination of guidance -control interface problems, & minimm
allowable frequency for updating the guildance commends must be established. There
exists no stendardized procedure for this task, but it should begin with an exami -
nation of the previous results.

For the flight times for which the introduction of continuously updated
explicit guidance caused little degradation of stability characteristics, signi-
ficant alteration because of sampling effects in the guidance loop is very unlikely.
However, for each flight time for which there is considersble degradation for a
continuous representation of the guidance loop, a further analysis should be con-
ducted to determine the lowest sempling frequency which results in adequate system
stability. If there is more than one such flight time, the highest such sampling

frequency must be used so that satisfactory stability characteristics exist for
all flight times.
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IV. ANALYSIS

This section provides the details of the analysis, the structure of which is
outlined in the preceding section.

A. Selection of Trajectory

The trajectory selected for this study places the payload in a 580-nautical
mile circular orbit. The flight is dividgd into three distinct segments. The
first is Atlaes booster flight, which extends from Liftoff to Booster Engine Cut-
off (BECO), at 140.09 seconds after Liftoff. Atlas sustainer flight is the second
phasé ; it extends from BECO until Sustainer Engine Cutoff (SECO), which occurs at
238.07 seconds after Liftoff. The third phase is Centaur flight y lasting from
SECO until Main Engine Cutoff (MECO), nominally at 566.25 seconds after Liftoff.

The explicit guidance scheme is designed for operation during portions of
the flight when aerodynamic forces are no longer significant. It is initiated
vhen the vehicle achieves a certain prespecified altitude. This occurs during
sustainer flight, the exact flight time being dependent on the altitude selected.
Consequently, this explicit guidance scheme is used from some point in the sus-
tainer phase until MECO. The period of time between Liftoff and MECO listed above
is nominal; for particular flights, non-nominael conditions can cause a change in
that time in accordance with the action of the explicit guidance methods.

B. Stability Analysis for Vehicle Without Explicit Guidance

The following discussion presents the stability characteristics for an Atlas/
Centaur launch vehicle which does not include any form of closed-loop guidance.
It provides a basis for comparison by which the effects of explicit guidance on
vehicle stability can be evaluated.

All analyses were conducted in the pitch plane, as it was judged that the
guidance-control interface problems are more severe there than in the yaw plene.
For the latter plane, the purpose of the éuida.nce loop is simply to maintain the
vehicle within the desired flight plene; no trajectory shaping is needed. How-
ever, in the pitch plane, trajectory shaping is required, because the wvehicle must
be placed in &8 prespecified orbit.
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1. System Descriptions

First, the system representations used for analysis of Atlas sustainer and
Centaur phases should be presented. The vehicle dynamic equations are very simi-
lar to many sets previously used in launch vehicle and missile design but are
considerably simplified by the fact that aerodynamic forces are insignificant.
The set summarized in Section 5,1 is applicable to both sustainer and Centaur
phases. The control systems used for the two phases differ considerably and are
responsible for the fundamental differences in system descriptions.

a. System Description for Sustainer Phase

Figure 1 is a conventional block diagram applicable to sustainer phase with-
out closed-loop guidance. The control system gains differ from those used for
Centaur flight, but there are only two essential differences between that diagram
and the corresponding one for Centaur phase. The first is the inclusion of the
25-radian-per-second simple lag filter for sustainer phase; no filtering is used
during Centaur flight. The second is that the effects of gyro dynamics may be
neglected for sustainer phase.

For both phases, the engine actuator hydraulics were simlated by a simple
lag; the time constants for the two segments of the trajectory differ slightly.

b. System Description for Centaur Phase

Figure 2 is the system block diagram for Centaur stage without closed-loop
guidance. Gyro dynamics must be included for this phase, because the gyros in
the two control systems differ considerably. The dynamics of the Centaur gyro,
an overdamped type, become significant at a frequency mich lower than the corres-
ponding frequency for the Atlas gyro; experience has shown that the degradation of
vehicle stability due to incorporation of closed-loop guidance is generally con-
centrated at low frequencies. Because the Centaur gyro is an overdamped type, its

dynamics may be simulated by a simple lag. The time constant, as given by Refer-
ence 2, is 0.03 seconds.

2. Flight Times Selected

Before the system stability portraits can be obtained, the flight times must

be chosen for which to conduct the linear analyses. In accordance with the
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philosophy explained in the previous section, the following four times of flight
were selected: (1) 200 seconds after Liftoff, approximetely at the midpoint of
the sustainer phase; (2) 360 seconds after Liftoff, approximately at the midpoint
of the period of use of the explicit guidance scheme; (3) 520 seconds after Lift-
off, during the latter portion of that period; and (k) 560 seconds after Liftoff,
nominally just 6.25 seconds before MECO. Table 1 gives the vehicle dynamic para-
meters for these times of flight.

3. Stability Portraits

Figures 3 through 6 shov the system stability portraits for a vehicle with-
out closed-loop guidance for the above four times of flight. The graphs are
gain-phase plots of the frequency responses of the transfer functions from com-
manded engine actuator angle to control system output, System stability margins
may be read from these graphs and are listed in Table 2, (Section 5.2 discusses
the use of such gain-phase plots for analysis of exoatmospheric flight of launch
vehicles or missiles; it also presents desirable values for the various stability

margins. )

A comperison of the gain-phase plots for the latter three times of flight
shows that the shapes of the three graphs are identicel and that the only dif-
ferences are in the location of the zero-decibel line. This reflects the fact
that the only differences in the three systems of equations are in the value of
the control coefficient <“E)’ to which the loop feedforward gain is linearly
related. The control coefficient increases with time during Centaur flight,
because the engine thrust remeins constant and vehicle moment of inertia decreases;
the result is that both low-frequency gain margin and rigid body phase margin
increase with time from their relatively low values for 360 seconds after Liftoff.
High-frequency rigid body gain margin decreases with time but is always more than
adequate throughout exoatmospheric flight.

C. Stebility Analysis for Vehicle Incorporating Explicit Guidance

This portion conteins the stability analysis conducted for an A/C vehicle using
explicit guidance. A procedure was followed that is very similar to that used
for an Atlas/Centasur without closed-loop guidence.
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Table 1. Vehicle Dynamic Parameters
T(time after q ac(ft/sece) uc(sec'a) jp(ft)

Liftoff-sec)

200 46.5 3.35 32.0
360 33.8 3.13 16.4
520 55,2 4.16 15.3
560 Al 65.9 k.73 14,6

Table 2.

Without Closed-loop Guidance

System Stability Margins for a Vehicle

T(time after “
Liftoff-sec)

Low-frequency Gain

e —

————

Rigid Body Phase
Margin (deg)

High-frequency Rigid
Body Gein Margin (db)

Margia (db)

200 22.5 Lk .0 21.3
360 7.1 22.5 31.6
520 9.6 29.5 29.0
560 10.8 32.5 27.9
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1. System Descriptions

The first task was linearization of the guidance equations so that an entire
set of perturbed equations was available for a vehicle with explicit guidance.
The details of the derivation are presented in Section 5,3, but the results are
summarized in Figure 7. The natures of the linearized models of the guidance

loop for sustainer and Centaur phases are identicel, and the values of the
linearized coefficients are given in Table 3.

2. Stability Portraits

Figures 8 through 11 are the stability portraits for a vehicle with explicit
guidance for the four flight times. Each is a gain-phase plot of the frequency
response of the transfer function from commanded engine actuator angle to control
system output. The stability margins are listed in Table i and can be compared
with the corresponding figures for an Atlas/Centaur without explicit guidance.

3. Comparison of Results

The corresponding stability margins were compared for two purposes; the most
important was to determine whether explicit guidance can be integrated into Atlas/
Centaur under the idealized condition of continuous updating of guidence commands.
The second purpose was to determine which times of flight should be subJected to
further analysis for derivation of minimum allowable sampling frequency.

The changes in stability mergins are tabulated in Table 5. For 200, 360 and
520 seconds after Liftoff, the introduction of explicit guidance causes no signi-
ficant reduction in stability margins. For the second of these flight times, the
rigid body phase margin is lower than desirable both with and without explicit
guidance, but this fact is traceable to the control system design, not any charac -

teristic of the guidance scheme.

For 560 seconds after Liftoff, there is considerable degradation of vehicle
stability characteristics. Though the high-frequency rigid body gein margin is
not significantly ultered, both the low-frequency gain mergin end the rigid body
phase margin are reduced to very low levels.
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Table 3. Values of Linearized Guidance Loop Coefficients

T (time after ' K (sec/ft) K (£t7%)
Liftoff-sec) v P
200 —.198(10'3) -.958(10'6)
360 -.381(1073) -.463(107°)
520 -.240(1073) -.507(20™")
560 -.903(1072) -.233(107%)

Table 4. System Stability Margins for a Vehicle
Incorporating Explicit Guidance

T(time after Low-frequency Gain Rigid Body Phase High-frequency Rigiad
Liftoff-sec) Margin (db) Margin (deg) Body Gain Margin (ab)
200 22.5 Ly 0 21.3
360 7.0 22.2 31.5
520 ‘ 9.5 28.8 29.0
560 il 4.0 24.8 27.9

Table 5. Changes in System Stability Margins Caused by
Incorporation of Explicit Guidance

Change in Change in Change in
T(time after Tow-frequency Gain Rigid Body Phase |High-frequency Rigid
Liftoff-sec) Margin (db) Margin (deg) Body Gain Margin (db)
200 0.0 0.0 0.0
360 -0.1 -0.3 -0.1
520 -0.1 -0.7 0.0
560 -6.8 -1.7 0.1
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However, several special considerations must be recognized in a discussion

of results for a flight time so late in the mission. The first is that MECO nomi-
nally occurs just 6.25 seconds later. Also, the explicit guidance scheme dis-
continues updating of commands five seconds before MECO, or only 1.25 seconds after
the flight time under consideration. When the guidance commands are no longer
updated, the stability characteristics revert to those for a vehicle without closed
loop guidance. For 560 seconds after Liftoff, the latter margins are satisfactory.

Consequently, although the stability characteristics for a vehicle with
explicit guidance are poor at 560 seconds after Liftoff, they are applicable only
for a very short period of time. This is significantly different from the more
usual situation in which stability characteristics change only very slowly with
flight time and poor stability mergins are likely to have more serious consequences.

Furthermore, the primary assumption upon which these linear analyses were
based is considerably less justifiable for an Atlas/Centaur with explicit guid-
ance near MECO than for the other situatioms treated. It was always assumed that
the linearized coefficients change at frequencies much:lower than the frequencies
of interest. However, as can be seen from Table 3, the coefficients of the guid-
ance loop change comparatively rapidly late in flight (for reasons discussed in
Appendix C in connection with the derivation of the literal expressions for the
coefficients), and the assumption of quasi-constant linearized coefficients was

more dubious than usual. The significance of stability margins was therefore
reduced.

Because of these considerations, the effects of the incorporation of explicit
guldance were judged tolerable for 560 seconds after Liftoff, because the analysis
showed that instability does not result. For the other flight times, the effects
were found acceptable because the stability characteristics were altered very
little by the inclusion of explicit guidence.

L. Determination of the Minimum Allowable Sampling Frequency

In the analyses explained above, the representation of the guidance loop
was continuous; the guidance commends were assumed to be updated instantaneously.

In fact, the commands are computed digitally and are updated only at intervels.
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Also, the computer requires a finite time to process information to generate
updated commands. Both effects cause degradation of system stability characteris-

tics.

Incorporation of explicit guidance causes very little change in vehicle
stability for 200, 360 and 520 seconds after Liftoff, and the addition of the
above two effects to the system models was expected to cause very little more
for realistic values of sampling frequency and computation time. Consequently,

the flight time nearest MECO was investigated further for determination of the
minimum allowable sampling frequency.

A sampled-data similation was used for this purpose. It is capable of
representing both the continuous nature of the wvehicle control system and dynamiecs
and the digital nature of the guidance loop. The computational delay was estimated
at 0.5 seconds and used throughout. Five sampling periods (lengths of intervals
between guidance command updatings) were selected for study and were intended
to cover the range of reasonable possibilities. They were 1, 2, 5, 10 and 20
seconds.

Any sampling period was considered acceptable which did not result in
instability for 560 seconds after Liftoff, in accordance with the reasons which
lead to the earlier conclusion that the effects of explicit guidance are tolerable
for that flight time. Figures 12 through 16 are vehicle stability portraits

for the five sampling periods tested. They show that the system is stable :or

periods of 1, 2 and 5 seconds, but unstable for values of 10 and 20 seconds.

Figures 12 through 16 are gain-phase plots of the frequency responses of the
transfer functions from commended vehicle body angle to output of the guidance
loop. This is a different transfer function from the one used to draw the gain-
phase plots discussed previously. Consequently, the general shapes of the curves
for the two sets of gein-phase plots differ markedly, and the stability margins
have different meanings. However, this is not important, because all that was
wanted from the second set was an indication of whether the systems including ex-
plicit guidance and sempling effects are stable.

A comparison of the five plots shows that the maximum allowable sampling
period is between 5 and 10 seconds, very likely only slightly greater than the

former value. Five seconds may be taken as the maximum allowable period.
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G. Summary

The first portion of the analysis was devoted to study of the guidance-
control interface problems under the assumption of continuous updating of guid-
ance commands, It was found that incorporation of explicit guidance results in
very little degradation of system stability for all flight times but those close
to MECO, Near MECO, there is considerable reduction of important stability

margins, but the vehicle remains stable even for those times of flight,

The second portion was an investigation of the effects on system stability
of the digital nature of the guidance computations, These effects are important
only for flight times near MECO; for 560 seconds after Liftoff, the vehicle is
stable for sampling periods of 5 seconds or shorter, but unstable for periods

longer than 5 seconds,
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V. ANALYSIS METHODS

A. Linearized Vehicle Dynamics Equations

In this appendix the dynamics equations used in support of the stability
analyses described in Sections III and IV are presented, Although the total
dynamics equations are nonlinear with time-varying coefficients, they were
linearized for control systems analyses, and the system was studied for fixed
times of flight, Two sets of linearized launch vehicle dynamics equations are
included below, The first is for the more general situation for which areo-
dynamic forces are significant, The second set can be obtained directly from
the first; it applies only to the exoatmospheric case which includes all of

the Atlas sustainer and Centaur phases,

0 General Case

The equations listed below describe the perturbed vehicle pitch plane
rigid body dynamics for the general case in which aerodynamics are significant.
The important variables are illustrated in Figure A-1. The fifth equation in
the list accounts for the fact that the inertial platform is displaced from
the vehicle center of gravity. This set of vehicle dynamics equations is
typical of those used in linear analyses:

Vo= ou b4 b, G (moment equation)

.Z'r = a.b - a, op - 2y ¥ (translational equation)

. .8y 1 33 g_cosB

Q’V = ‘1’ + ..V_ 5 - -\7 (a* - g cosa)av - v aT - v L] (normal force

equation)
op T ooy tay
zZ = .
m %rég v

where the variables are defined as follows:

vehicle body angle (rad)

o <
] ]

actual engine angle (rad)

total effective angle of attack (rad)
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actual vehicle angle of attack (rad)
equivalent wind angle of attack (rad)

distance of vehicle center of gravity normal to reference axis
from nominal point in the pitch plane (ft)

distance (as measured in vehicle guidance loop) of vehicle center
of gravity normel to reference axis from nominal point in the
pitch plane (ft)

The parameters involved in the above four equations are defined by these
relations:

T4 /1
F”ﬂb/l

TC/M

EQ/M

(T-D)/M

vehicle mass (slugs) )
vehicle inertia about pitch axis (slug-fta)
total thrust (1b)

control thrust (1b)

aerodynamic force per unit total angle of attack (1b/rad)

vehicle drag force (1b)
vehicle velocity (ft/sec)
acceleration of gravity (ft/sec?)

distance parallel to roll axis between vehicle center of
gravity and engine gimbal point (ft)

distance parallel to roll axis between vehicle center of
gravity and vehicle center of pressure (ft)

distance parallel to roll axis between vehicle center of gravity
and vehicle inertial platform (ft)

nominal vehicle flight path angle (rad)
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o Exoatmospheric Case

The second set of linearized launch vehicle dynamics equations applies
only to the exoatmospheric case. This set is a simplified version of the

first list. The aerodynamic paremeters, a_ and Hop become zero, vhich elimi-

(o
nates the need for computing angle of atteck. Also, the parameters a, and a "
become identical, because the drag force goes to zero and the control thrust

equals the total vehicle thrust. The result is a group of only three equations,

as compared with the five previously required:

¥ o= u.b
Z, = ac6 - ac\h
zrm = Zr-lpﬂv

where both the variables and parameters are defined as above. Figure A-2 is
a block diagram representation of these relations expressed in lLaplace Trans-

form notation.

A
z (s)

8(s) | ‘ig- W(s)
’Q ;rm(s)
a8 + W 2 1

Figure A-2. BHlock Diagram Representation of
Exoatmospheric Vehicle Dynamics
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B. Gain-Phase Plots For Launch Vehicles During Exoatmospheric Flight

This appendix presents a brief discussion of the use of gain-phase plots
for launch vehicle stability analyses. It concentrates particularly on their
utility for treatment of flight times during exoatmospheric phases.

The gain-phase plot is a graph of the frequency response of a system
open-loop feedforward transfer function. The coordinates are the gain and
phase of the frequency response, with input frequency as a parameter. Though
the plot is drawn for an open-loop transfer function, its features have signi-
Ticance in terms of system closed-loop stability, Just as do the features of
the Bode plot. 1In fact, a gain-phase plot is actually a Bode plot expressed
in terms of two orthogonal coordinates.

The transfer function generally used in control system analysis and syn-
thesis is from commanded engine actuator angle to control system output.
Figure B-1 shows schematically the reletionship of these two variables and the
relative positions of all components of the system in the feedforward loop.
Figure B-2 is a typical gain-phase plot for this transfer function for a launch
vehicle or missile operating above the atmosphere.

- If the system is to be stable when operating in the closed-loop mode, the
origin mist always be on the right of the trace as it is traversed from low to
high input frequencies. Moreover, it is not enough that the system be stable;
to insure adequate vehicle response characteristics, certain minimum levels
should be maintained for the various stability margins.

Generally, there are no more than three important stability margins for
flight outside the atmosphere. They are low-frequency gain margin, rigid body
phase margin, and high-frequency rigid body gain margin, all of which are
defined in Figure B-2. For each time of flight treated, each gain margin should
be 6 decibelsor greater , and the rigid body phase margin should be at least
30 degrees. For vehicles which do not include integrators in their control

systems for exoatmospheric flight, there exists no low-frequency gain margin.
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f GAIN (av)

PHASE (deg)

Legend

A - Low-frequency Gain Margin
B.- Rigid Body Phase Margin

C - High-frequency Rigid
Body Gain Margin

Figure B-2. Typical Gain-phase Plot for Launch Vehicle
During Exoatmospheric Flight
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The exoatmospheric case is considerably simpler than the atmospheric
situation, for which there is a greater number of significant stability mar-
gins. In the latter case, bending, engine actuator nonlinear:lties, and slosh
are important and must be included in the analysis. In the former case, such
modes can usuelly be neglected, as they generally cause only very minor modi-
fications in vehicle stability portraits.
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C. Linearization of Explicit Guidance Equations

This appendix presents the linearization of the explicit guidance equations.
The result is a linear, constant coefficient differential equation which describes
the small-angle behavior of the guidance scheme. With the rerturbed equations
for the vehicle dynamics and control system, it was used in conjunction with con-
ventional linear analysis techniques to obtain gsystem stability portraits for an
Atlas/Centaur vehicle incorporating explicit guidance.

o Assumggions

Several simplifying assumptions were used during the linearization. Their
utility can be understood through a brief discussion of the essentials of the
guidance scheme.

At the end of each guidance cycle, the explicit guidance equations produce
a commanded orientation expressed in an inertial coordinate frame. The Centaur
resolver chain translates this and the actual vehicle orientation into error sig-
nals in body axes. The equations also yield an estimate of the remaining burn arc
required for injection into the prespecified orbit; the estimate is expressed as
the difference in true anomaly between the rresent vehicle position and the pre-
dicted vehicle position at MECO. The vehicle anomaly at MECO is not fixed as this
set of guidance equations is intended to place the rayload in a prespecified
orbit, but not at any prespecified point or time. This burn arc estimate is used
as the starting point for the computations of the next guidance cycle.

For the purposes of analysis, however, it was assumed that the true anomaly
at injection is constant. Any change in the burn are remaining is attributed to
change in vehicle position. While this is not strictly true, the frequencies at
which the commanded injection conditions change are expected to be low, consi-
derably lower than the system frequencies of interest.
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Another important assumption is that the Centaur acceleration also changes
very slowly. In the explicit guidance equations, that quantity is not measured;
it is computed as a function of the velocity consumed. However, in the linearized

analyses, it was treated as a constant.

o Linearization

Figure 8 of Reference 1 includes most of the equations involved in the gui-
dance-control interface as limited by the above assumptions. This diagram is com-
plicated by the fact that it is very general and includes some equations not
applicable to the Atlas/Centaur problem. It also includes equations which, after
linearization, affect only the yaw plane. Figure C-1 includes only the equations
necessary for the Atlas/Centaur piteh-plane analysis, though they are not in per-

turbed form.

The independent variables in Figure C-1, those which are independent where-

ever they appear in the diagram, are vg, Ve Yy, and z. They are defined as fol-

lows:
v8 = velocity-to-go during remainder of Centaur flight
v, = horizontal component of vehicle in-plane velocity
v, = vertical component of vehicle in-plane velocity
2z = vehicle distance from center of earth

This reflects the fact that the explicit guidance scheme is conceptually based
on a local vertical coordinate frame, illustrated in Figure C-2. The commanded
vehicle orientation in the pitch plane is given by the direction cosine Caz’

Caz = direction cosine of the angle between the local vertical

and the commanded vehicle roll axis.

The above variable is the lone completely independent quantity in the dia-
gram and is directly related only to: (1) distance from the center of the earth;
(2) the horizontal component of the vehicle in-plane velocity; and (3) the




1.‘_’5_.1'25_
T=Ts+5vg -3 Kl +3 Klg
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B= -3 (rD - vz) + 2 (rD -z -va)
2
v
C -slp.-x , w
8z z 2
z
Definitions

steering coefficient

exhaust velocity of Centaur
desired radius at injection

desired radial velocity at injection
time-to-go until sustainer burnout

reciprocal of thrust acceleration
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universal gravitational constant times mass of earth

Figure C-1. Computational Flow Diagram for the

Pitch Plane Case
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Actual Vehicle
Roll Axis Orientation

Local /
Vertical

Nominal Vehicle
Roll Axis Orientation

-

% Vehicle Center

of Gravity

Figure C-2. Local Vertical Coordinate System
Used in Explicit Guidance Equations
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‘ steering coefficient B. The total differential for the direction cosine is given
by:
de = a:az dv_ + a:az dz + a:az dB
az S;x Vx > )

The steering coefficient B is itself directly dependent on three quantities,
two of which are independent variables in the diagram of Figure C-1. They are:
(1) the vertical component of vehicle in-plane velocity; and (2) vehicle distance
from the center of the earth. The third quantity is defined as follows:

T = time-to-go until MECO

The total differential for the steering coefficient B is:

dB = g—z dvz+-§—dz+% ar

‘ Substitution yilelds:
& b & &
_ _az az B az az B
RCURE- T PR M- I 2 a1
+ a:az B ar
8 I

The time-to-go until MECO is directly dependent just on velocity-to-go
during present phase of flight, and the total differentials for these two vari-
ables are related by:

ar

aT = dv
Y g g

Consequently, the total differential of the direction cosine can be expressed as:
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¢ ac ac dc dc
de =22 gy az 9B av az , _az 3B | . az 3B 3T av
az avx X 9B avz z| 2z 0B 2z 3B aT avg g

However, the velocity-to-go during the Centaur phase of flight is a function only
of the horizontal and vertical components of vehicle in-plane velocity. For
Centaur phase, the equation is:

~ 2 2
Vg * \/QVk ka) * (vi vzf)

where Ver and V,p ©XDPress the desired vehicle velocity at MECO in the local
vertical coordinate frame for the present time of flight. For sustainer flight,
the equation is identical except that the nominal vehicle velocity at SECO is
subtracted from the right-hand side. The total differential of velocity-to-go is:
ov v
av. = —8 av_+ £ av
4 av* avz

X Z

In the linearized equations describing the vehicle control system, commanded
vehicle attitude is stated in terms of an angle:

{, = commnded vehicle body angle (rad)

Its zero point corresponds to the nominal vehicle attitude, and it depends only
on the direction cosine Copt

d*c = T de

az

When several of the above relations are appropriately combined, the total
differential of the linearized flight path angle can be expressed in the follow-
ing general terms:
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a*c az a:a.z B & & a:az B

v, = ¥ > "8 T ¥ e\ s
az X g x z

o x &

az

+“§'§§;375 av, + (22 + $* 2 s

This expression is a function of differentials of quantities expressed in
the local vertical coordinate frame. For a representation of the entire guidance
loop, it must be a function of differentials of quantities defined in body coor-
dinates. The transformation in the pitch plane from body axis to a local verti-

can set can be written very generally as:

With the inclusion of the sbove transformation, the equation describing
the guidance loop assumes the following form when written in lLaplace Transform

notation:

Vo(s) = (ks k) 2 (s)

where the variable on the right-hand side is as defined in Appendix A and the
linearized guidance loop coefficients, kp and kv’ are given by:

x *.. 3 b

az+ az B & ¥ + T + ;&
Ti2 3B E’g’&i 2| & o

Z z

Z

&19!
&
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kK = T BQ: a‘:az . E!:a.z B
P 22 x,, X B X

These coefficients must now be written in more specific terms. The follow-
ing expressions are easily derived from equations presented earlier or contained
in Figure C-1:

& 2ov

az _

& 2

x
&
3] 2

T?E =;§<Vx '%)
X
B _ b
. 0T

2
B3 _ 6
X @

r, -2
3 2 . D
¥ - ;2 (rb + 2 v, " 6 T )
ar vg_ l(;&gf
= Bll -3 + =
?'w'g' K19 2
g;i . Y ~ Vxr
v

X g

Y v -V
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The remaining partial derivative and the elements of the transformation are ex-
panded as follows in accordance with the definitions of polarity included in
Figure C-2:

o, .
S = csc

az
T12 = cos B
T22 = =-gin B

The linearized guidance loop coefficients can now be written in terms of
vehicle state variables:

v . I'n = 2a- v
kv=25{%--’zscots+’-r—:—é-|:i‘n+2vz-6DT -!Ll-if;
g
AL 2
+ 2 (Kf;> ] [(vx - vxf) cot B - (vz - vzf)] }

(- 2]

[ [

k =5[§2—-
P

This completes the linearization of the explicit guidance equations for the pitch
plane case.

In Table 3 of Section IV, it is seen that, when the above expressions are
evaluated for particular flight times, the resulting linearized coefficient values
become relatively very lorge for flight times near MECO. The reason for this is
contained in the above equations. As the vehicle nears MECO, the terms which in-
volve inverse powers of time-to-go until MECO tend toward infinity. So do the
values of the linearized guidance loop coefficients, since both the above expres-

slons contain at least one such tern.
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VI. CONCLUSIONS AND RECOMMENDATIONS

On the basis of the results of this preliminary study, it is concluded that
the effects on vehicle stability of incorporation of the explicit guidance scheme
are acceptable if the guidance commands are updated every 5 seconds or more fre-

quently.
Further studies should be more detailed in several aspects:

(1) when the classes of trajectories have been delineated more speci-
fically, several representative missions should be selected and simi-
lar analyses performed to corroborate the assumption that the results

are not trajectory dependent;

(2) the vehicle dynamics equations should be modified to include bending
and sloshing to verify the assumption that there exists little inter-

action between the guidance loop and these modes;

(3) a time-varying simulation should be conducted and the resulting time
responses examined to determine the consequences of possible low sta-

bility margins for flight times very close to MECO,




APPENDIX B

DERIVATION OF ORBIT PARAMETERS, FROM THE MISSION CONSTRAINTS
C3, Rp’ s FOR ESCAPE HYPERBOLA

A, CONIC PARAMETERS (a, e, p)

For a hyperbola the following two relations are well known,

p = a(e-1) - (14)
Rp = a(e-1) (2A)
from which
RP
a = =1 (3A

Combining (1A), (2A), and (3A) and noting that for a conic

h? = pp (4A)
we get
2
- h
e = LR - 1 (5A)

2 _ 2 2
h™ = Rp Vp (6A)
where from vis-viva
2 _ (2,1
vy o= P-<R + a) (7A)
P
and at infinity
N T T R
Vo = P-<m+ a> a C3 (SA)
Combining (6A), (7A), and (8A)
2 2
h®" = 2R p+ R “C 9A
pu p ©3 (9A)



and substituting this into (5A)

R C

3
e = 1+
B (10A)
Also substituting (8A) into (1A) we get
p.(ez - 1)
p = —¢— (11A)
3
Thus (8A), (10A), (11A) provide a, e, and p from Rp and Cj
B, DIRECTION OF PERIGEE ('{Rp)
Let 6 be the acute angle between -i_Rp and 8, Then

IRpr = jsin@ . (12A)
If both sides of (12A) are crossed with s

ix(ERPx;) = 8x]8iné (13A)
or employing the familiar vector identity for triple cross products,
(13A) becomes

ERP -8 (s Eﬁﬁ) =8 xj-cos ] (14A)
But

'K —iRP = - cos 6 (15A)
Thus

iR = 8xJsin6 -8 cos @ (16A)

where, for a hyperbola

6 = tan-1 [ \/e2 -1 ] (17A)




APPENDIX C

DERIVATION OR ORBIT PARAMETERS FROM THE MISSION CONSTRAINTS
RT' VT AND Rp FOR TRANSLUNAR ELLIPTIC TRAJECTORIES

A. CONIC PARAMETER (a, e, p)

Repeating steps similar to (1A) through (5A) in Appendix A it can
readily be shown for an ellipse.

e :_[J-R -1 ’ (IB)

n? = R 2v 2 (6A)
P P
we get |
R V2
e=_PEP_-1 (2B)

From the vis-viva law,

2 _ 28w
P
and
vt = gkt (4B)
T
When (2B), (3B) and (4B) are combined the expression for e is
2
e 1.8 |& . 1 (5B)
- P RT - B

Now from (4B) 'a' can be obtained and then 'p' can be computed from

p = all -ed) | (6B)



B. DIRECTION OF PERIGEE, (LRP)

Referring to Figure 1B, and the more generalized vector diagram

(2B) we can express R, in terms of Ry and Vr as

P

(7B)

LUNAR SPHERE
OF INFLUENCE

Figure 1B
| R
p
~
N b
fr S
90 - I
a = » R
90 - T
Vr
Figure 2B




From the law of sines

b _ _ Rp
sinfr, ~ sin (90 - T) (8B)
or
R_ sin fT
b = s T , (9B)

Also we have from Figure 2B

a = Rp cos f+bsinl : (10B)

Thus, putting (9B) and (10B) into (7B) yields

. R sinf_, V,
= _ . sinC T T T
Rp - Rp [cos fp + sin fr cosT R - [Rp cos VT]
(11B)
or
R v
Fr T _ inf-X
iRp = 53 [cos (fT - I) R - sinf 7 ] (12B)
T T
Now, from Figure 1B)
R, - ¥
= sin”} [—;{—V—T (13B)
T T
and from the polar equation of the ellipse
f. = cos-1 (e -1 (114B)
T e RT

Thus with (13B) and (14B), i‘Rp is defined.



APPENDIX D

ANGLE BETWEEN PERIGEE AND OUTWARD
ASSYMPTOTE OF ESCAPE HYPERBOLA

If 'a' is one half the transverse axis and 'b' is one half the conjugate

axis the angle f;, between the transverse axis and an assymptote is given

by
b
fT = tanz- (1A)

Now, for a hyperbola the, eccentricity, e, is

+b b
e = 2 o 2 = 1 t= (2a)
a
or
2 2
e2 -1 = 'b—é- = tan fT (3a)
a

If 'p' is the semi-latus rectum, then it can be shown that

%= e - 1 (4a)

Substituting 4a into 3a we have

- -1 /p
f.t = tan < (5a)

Since we are interested in the angle between the perigee vector and the

outward assymptote, the angle, f.., is given by

_ -1 /p
fr = 180 - tan /a

D-1



APPENDIX E

TABULATION OF INPUTS FOR EACH MISSION

Below are tabulated the inputs associated with these guidance equations,
for each mission. With these inputs the maneuver proceeds automatically

to completion of the Centaur Guidance role.

A, INPUTS COMMON TO ALL PROPOSED MANEUVERS

K¢ K6 Ky7 - Kgg
K, K7 Ks)
K Kig ag
K2 Kig atg
t)
K4 Koo !
w
Kis Ko b= 1
N = oo

B. INPUTS FOR SPECIFIED EARTH ORBIT IN ADDITION TO A

K23 iRp = o circular orbit t = .1
K,, # o elliptic orbit v = o
K2 5 Jj TT = o
C. INPUTS FOR INTERPLANETARY MISSION IN ADDITION TO A
(1 BURN)
K, iRp £ =1
K2 4 s vV = o
K, j TT = o

D. INPUTS FOR PRE-TARGETED LUNAR MISSION IN ADDITION
TO A (1 BURN)

K 1; v =

23 —Rp . . o
K24 rT TT = o
K>s j



E. INPUTS FOR INTERPLANETARY MISSION IN ADDITION TO A

(2 BURN)

K K

23 23

Kog Koy

K K

25! 25’

iRy Ry

j

S

It
o]

= -1

= 0

F. INPUTS FOR PRE-TARGETED LUNAR MISSION IN ADDITION

TO A (2 BURN)

K

K,z Ryg!

K24, K

K K

25 Fo5'

.{RP' ERP'

T

24"

210

aa

o
= 2

G. INPUTS FOR RENDEZVOUS MISSIONS AND IN-FLIGHT TARGETED

LUNAR MISSIONS IN ADDITION TO A (1 BURN)

Ky

Kio

K3

K30

v

TT

1
o)




H, INPUTS FOR RENDEZVOUS MISSIONS AND IN-FLIGHT TARGETED
LUNAR MISSIONS IN ADDITION TO A (2 BURN)

K, K3 ' J

L& = -1
K, Kos

vV = o
K, Ky

TT = 1
Ky K30 M. o= 1

A
K K
10 115 b ot o
K13 iRp aa = o

J. INPUTS FOR COM-SAT MISSION IN ADDITION TO A (3 BURN)

K K

1 | 23 B3’ 3

L = -1
K, Kag Koy

v = 0
K, Kasr Kps!

TT = 1
s %30 M, =3

A
K K
10 115 Wb = o
K13 iRp' iRp' | aa = o



